Kuwait University

Department of Physics

General Physics II for Biological Sciences (Phy 122) First Midterm Examination (Summer Semester 2023-2024) June 29, 2024 Time: 8:00 AM to 9:30 AM Instructor: Dr. S.S.A. Razee

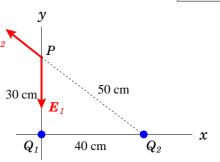
Solution

Fundamental Constants				
$k = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	Coulomb's constant			
$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$	Permitivity of free space			
$\mu_0 = 4\pi \times 10^{-7} \ \mathrm{T} \cdot \mathrm{m/A}$	Permeability of free space			
$e = 1.6 \times 10^{-19} \text{ C}$	Elementary charge			
$m_e = 9.11 \times 10^{-31} \text{ kg}$	Mass of an electron			
$m_p = 1.67 \times 10^{-27} \text{ kg}$	Mass of a proton			
$\mathrm{eV} = 1.6 \times 10^{-19} \mathrm{~J}$	Conversion from eV to J			
$N_A = 6.022 \times 10^{23} / \text{mol}$	Avogadro's number			

Prefixes of units

$m = 10^{-3}$	$\mu = 10^{-6}$	$n = 10^{-9}$	$p = 10^{-12}$	$k = 10^{3}$	$M = 10^{6}$
	<i>F</i> -		1 -		

Instructions to the Students:


- All communication devices must be switched off and placed in your bag. Anyone found using a communication device will be disqualified.
- Programmable calculators, which can store equations, are not allowed.

Problems	#1	#2	#3	#4	#5	#6	#7	#8	Total
Max. Marks	6	4	4	5	3	4	4	5	35
Score									

For use by instructors only

1. Two point charges, $Q_1 = -6.0$ nC and $Q_2 = +8.0$ nC, are in the xy--plane as shown. The point P is on the y-axis. Find the x-component and the y-component of the net electric field \vec{E} at P. **6 points**

Solution: Since $Q_1 < 0$ and $Q_2 > 0$, the directions of E_1 and E_2 are as shown. The magnitudes and components of E_1 and E_2 are

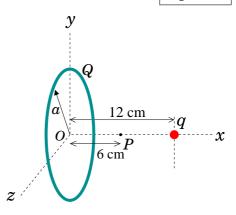
$$E_{1} = \frac{k|Q_{1}|}{0.3^{2}} = 600.0 \text{ N/C} \implies \begin{cases} E_{1x} = 0.0 \text{ N/C} \\ E_{1y} = -600.0 \text{ N/C} \end{cases}$$

$$E_2 = \frac{k|Q_2|}{0.5^2} = 288.0 \text{ N/C}; \Longrightarrow \begin{cases} E_{2x} = -E_2 \times \frac{0.4}{0.5} = -230.4 \text{ N/C} \\ E_{2y} = +E_2 \times \frac{0.3}{0.5} = +172.8 \text{ N/C} \end{cases}$$

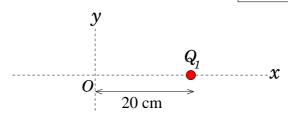
Then

$$E_x = E_{1x} + E_{2x} = -230.4 \text{ N/C}$$
 $E_y = E_{1y} + E_{2y} = -427.2 \text{ N/C}$

2. A uniform ring of radius a = 8 cm and charge $Q = -12.0 \ \mu$ C is fixed in the yz-plane with its centre at the origin O. A point charge $q = +4.0 \ \mu$ C is on the x-axis at 12 cm from the origin. Find the net electric field \vec{E} at the point P which is at a distance x = 6.0 cm from the origin. **4 points**


Solution: Both \vec{E}_{Ring} and \vec{E}_{q} are in the **negative** *x*-direction. The magnitudes are

$$E_{Ring} = \frac{k|Q|(0.06)}{(0.06^2 + 0.08^2)^{3/2}} = 6.5 \times 10^6 \text{ N/C}$$
$$E_q = \frac{k|q|}{0.06^2} = 1.0 \times 10^7 \text{ N/C}$$


The magnitude of the net electric field is

$$E = E_{Ring} + E_q = 1.65 \times 10^7 \text{ N/C}$$

The direction: in the **negative** x-direction.

3. The point charge $Q_1 = -3.0 \ \mu\text{C}$ is on the *x*-axis at a distance of 20 cm from the origin as shown. Find the location of the point charge $Q_2 = +2.0 \ \mu\text{C}$ on the *x*-axis such that the net electric field $\vec{E} = 0$ at the origin *O*. **4 points**

Solution: Since Q_1 and Q_2 have opposite signs, and $|Q_2| < |Q_1|$, the point at which $\vec{E} = 0$ (in this case, it is the origin), must lie on the side of Q_2 and not in the middle. Therefore, Q_2 must be **between** O and Q_1 . Let this distance be x. Then

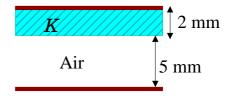

$$\frac{k|Q_1|}{0.2^2} = \frac{k|Q_2|}{x^2} \implies x = 0.16 \text{ m}$$

4. Two charged particles of identical mass $m = 5.0 \times 10^{-6}$ kg have charges $Q_1 = -3.0$ nC and $Q_2 = -2.0$ nC. They are released from rest when they were 40 cm from each other. Find the **distance between the particles** when the speed of each particle is 25 m/s? **5 points**

<u>Solution</u>: Let r be the distance between the particles when their speeds are 3.0×10^3 m/s. The work-energy principle gives

$$\operatorname{KE}_{f} - \operatorname{KE}_{i} + \operatorname{PE}_{f} - \operatorname{PE}_{i} = 0$$
$$\implies 2 \times \frac{1}{2}mv^{2} - 0 + \frac{kQ_{1}Q_{2}}{r} - \frac{kQ_{1}Q_{2}}{0.4} = 0$$
$$\implies \frac{kQ_{1}Q_{2}}{r} = \frac{kQ_{1}Q_{2}}{0.4} - mv^{2} = 0.132$$
$$\implies r = 0.41 \text{ m}$$

5. Two very large parallel flat sheets, A and B, are held at electric potentials $V_A = +20$ V and $V_B = -10$ V respectively as shown in the figure. The separation between the plates is x = 8 cm. The points *i* and *f* shown in the figure are also at a distance of *x* from each other and the angle $\theta = 40^{\circ}$. Find the potential difference $(V_i - V_f)$. 3 points


Solution: The electric field is uniform, so

$$V_A - V_B = Ex \implies E = \frac{V_A - V_B}{x} = 375 \text{ N/C}, \text{ and so, to the right}$$

The

$$V_i - V_f = Ex \,\cos 40^\circ = 23 \,\mathrm{V}$$

6. A parallel-plate capacitor with plate-area $A = 2.0 \times 10^{-4} \text{ m}^2$ is partially filled with a dielectric of dielectric constant K = 3 and thickness 2 mm. The thickness of empty space (air) between the plates is 5 mm (see the figure). Find the capacitance of this capacitor. 4 points

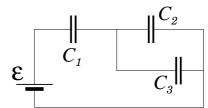
<u>Solution</u>: This capacitor can be considered as two capacitors C_1 (with the dielectric) and C_2 (with air) in series. Now

$$C_1 = K\varepsilon_0 \ \frac{2.0 \times 10^{-4}}{0.002} = 2.66 \times 10^{-12} \text{ F}$$
$$C_2 = \varepsilon_0 \ \frac{2.0 \times 10^{-4}}{0.005} = 3.54 \times 10^{-13} \text{ F}$$

The capacitance of the given capacitor is

$$C = \frac{C_1 C_2}{C_1 + C_2} = 3.13 \times 10^{-13} \text{ F}$$

7. A parallel-plate capacitor filled with a dielectric of dielectric constant K = 4.3 has a thickness d = 4.0 mm. The energy in the capacitor is $PE = 4.8 \times 10^{-6}$ J when it is connected to a battery. While it is still **connected to the battery**, the **dielectric is pulled out** and its **thickness is decreased** to d' = 3.0 mm. Find the energy now stored in this capacitor. **4 points**


Solution: Let the old capacitor be C and the new capacitor be C'. Then

$$\frac{C'}{C} = \left(\frac{1.0}{K}\right) \left(\frac{A}{A}\right) \left(\frac{4.0 \times 10^{-3}}{3.0 \times 10^{-3}}\right) \implies \frac{C'}{C} = 0.31$$

In this case, the voltage V across the capacitor remains unchanged. So

$$\begin{array}{c} \mathrm{PE} = \frac{CV^2}{2} \\ \mathrm{PE}' = \frac{C'V^2}{2} \end{array} \end{array} \implies \begin{array}{c} \frac{\mathrm{PE}'}{\mathrm{PE}} = \frac{C'}{C} = 0.31 \\ \Longrightarrow & \mathrm{PE}' = (0.31) \times \mathrm{PE} = 1.5 \times 10^{-6} \mathrm{J} \end{array}$$

- 8. Three capacitors are connected to an unknown source of emf \mathcal{E} as shown in the circuit. The capacitance $C_1 = 6$ nF, $C_2 = 9$ nF, but C_3 is unknown. The plate-charges on C_1 and C_3 are respectively $Q_1 = 54$ nC and $Q_3 = 36$ nC.
 - (a) Find C_3 .
 - (b) Find \mathcal{E} .

Solution: We have

$$V_1 = \frac{Q_1}{C_1} = 9 \text{ V}$$

3 points

2 points

Then

$$\begin{cases} C_2 \text{ and } C_3 \text{ are parallel} \\ C_1 \text{ and } C_{23} \text{ are in series} \end{cases} \implies \begin{cases} Q_1 = Q_{23} \implies Q_1 = Q_2 + Q_3 \\ Q_2 = Q_1 - Q_3 = 18 \text{ nC} \end{cases} \\ \implies V_2 = \frac{Q_2}{C_2} = 2 \text{ V} \\ \implies V_3 = V_2 = 2 \text{ V} \\ \implies C_3 = \frac{Q_3}{V_3} = 18 \text{ nF} \\ \implies \mathcal{E} = V_1 + V_{23} = V_1 + V_2 = 11 \text{ V} \end{cases}$$