

General Physics II for Biological Sciences (Phy 122)

First Midterm Examination (Fall Semester 2024-2025)

October 19, 2024

Time: 2:00 PM to 3:30 PM

Instructor: Dr. S.S.A. Razee

Solution

Fundamental Constants

Prefixes of units

Instructions to the Students:

- All communication devices must be switched off and placed in your bag. Anyone found using a communication device will be disqualified.
- Programmable calculators, which can store equations, are not allowed.
- 1. Two point charges, Q_1 and Q_2 are placed in the xy−plane as shown. The net electric field \vec{E} at the origin O is in the **positive** y–**direction** (see the figure) with **magnitude** $E_y = 120$ N/C.
	- (a) What is the sign of charge Q_1 ? (Tick the correct answer) 1 point

```
Positive / Negative
```
(b) What is the sign of charge Q_2 ? (Tick the correct answer) 1 point

Solution: For the given direction of the net electric field the directions of E_1 and E_2 are as shown by green arroes. Then $Q_1 > 0$ and $Q_2 < 0$.

The y–component comes entirely from E_2 . So

$$
E_y = E_{2,y} = +E_2 \times \frac{0.3}{0.5} \Longrightarrow E_2 = E_y \times \frac{0.5}{0.3} = 200 \text{ N/C}
$$

So

$$
E_2 = \frac{k|Q_2|}{0.5^2} \implies |Q_2| = \frac{E_2 \times (0.5)^2}{k} = 5.56 \times 10^{-9} \text{ C} \implies Q_2 = -5.56 \times 10^{-9} \text{ C}
$$

The x−component is zero. So

$$
E_{1,x} + E_{2,x} = 0 \implies E_{1,x} = -E_2 \times \frac{0.4}{0.5} = -160 \text{ N/C} \implies E_1 = 160 \text{ N/C}
$$

So

$$
E_1 = \frac{k|Q_1|}{0.4^2} \implies |Q_1| = \frac{E_1 \times (0.4)^2}{k} = 2.84 \times 10^{-9} \text{ C} \implies Q_1 = +2.84 \times 10^{-9} \text{ C}
$$

2. The point charge $Q_1 = +3.0 \mu C$ is at the origin and the point P is on the x-axis at a distance of 20 cm from the origin as shown. Find the location (coordinates) of the point charge $Q_2 = -5.0 \mu C$ such that the net electric field $\vec{E} = 0$ at P. \vert 5 points

Solution: We have

$$
E_1 = \frac{k|Q_1|}{0.2^2} = 6.75 \times 10^5 \text{ N/C} \qquad \text{to the right}
$$

Since $\vec{E} = 0$ at P, we must have

$$
E_2 = 6.75 \times 10^5 \text{ N/C} \qquad \text{to the left}
$$

$$
\implies \frac{k|Q_2|}{r^2} = 6.75 \times 10^5 \implies r = 0.26 \text{ m}
$$

Since $Q_2 < 0$, and \vec{E}_2 is to the left, the charge Q_2 must be placed to the left of P. So the coordinate of the location of Q_2 is

$$
-0.26 + 0.2 = -0.06
$$
 m

- 3. A uniform ring of radius $a = 8$ cm and charge $Q = +12.0 \mu C$ is fixed in the yz-plane with its centre at the origin O. A point charge $q = -5.0 \mu C$ is on the x-axis at 6 cm from the origin.
	- (a) What is the direction of the force on q ? (Tick the correct answer) 1 point

Solution: We have

 $E_{Ring}=$

In positive x-direction $\sqrt{}$ In negative x-direction

(b) Find the magnitude of the **electric force** on the charge q by the ring. \vert 3 points

4. Two charged particles of identical mass $m = 5.0 \times 10^{-12}$ kg have charges $Q_1 = -3.0$ nC and $Q_2 = -2.0$ nC. They are released from rest when they were 40 cm from each other. Find the distance between the particles when the speed of each particle is $v = 140 \text{ m/s}$? 5 points

Solution: Let r be the distance between the particles when their speeds are 140 m/s. The work-energy principle gives

$$
KE_i + PE_i = KE_f + PE_f
$$

\n
$$
\implies 0 + \frac{kQ_1Q_2}{0.4} = 2 \times \frac{1}{2}mv^2 + \frac{kQ_1Q_2}{r}
$$

\n
$$
\implies \frac{kQ_1Q_2}{r} = \frac{kQ_1Q_2}{0.4} - mv^2 = 3.7 \times 10^{-8}
$$

\n
$$
\implies r = \frac{kQ_1Q_2}{3.7 \times 10^{-8}} = 1.46 \text{ m}
$$

5. Three point charges, $Q_1 = -2$ nC, $Q_2 = +3$ nC and $Q_3 = +4$ nC are at the vertices of an equilateral triangle of side 8 cm. Find the total electric potential energy of the system. (Take $PE = 0$ when the charges are very far away from each other.) 4 points

Solution: The total electrostatic potential energy is

PE =
$$
\frac{kQ_1Q_2}{a} + \frac{kQ_2Q_3}{a} + \frac{kQ_1Q_3}{a} = -2.25 \times 10^{-7}
$$
 J

6. A parallel-plate capacitor of plate-area $A = 4.0 \times 10^{-4}$ m² and thickness $d = 1.5$ mm is filled with paraffin (dielectric constant, $K = 2.25$). If the electric energy stored in the capacitor is $PE = 2.4 \times 10^{-11}$ J, find the magnitude of the electric field between the plates. $\vert 4 \text{ points} \vert$

Solution: The capacitance is

$$
C = K\varepsilon_0 \frac{A}{d} = 5.31 \times 10^{-12} \text{ F}
$$

PE = $\frac{1}{2}CV^2 \implies V = \sqrt{\frac{2 \times \text{PE}}{C}} = 9.0 \text{ V}$

$$
V = Ed \implies E = \frac{V}{d} = 6.03 \times 10^3 \text{ V/m}
$$

7. An air-filled parallel-plate capacitor is charged to $V = 15$ V and the **battery is discon**nected. Then the thickness of the capacitor is changed from $d = 3$ mm to $d' = 4$ mm, and the space between the plates is filled with a dielectric of dielectric constant K . If the new voltage across the capacitor is $V' = 17$ V, find K. $\boxed{4 \text{ points}}$

Solution: Let the old capacitor be C and the new capacitor be C' . Then

$$
\frac{C'}{C} = \left(\frac{K}{1.0}\right) \left(\frac{A}{A}\right) \left(\frac{3.0 \times 10^{-3}}{4.0 \times 10^{-3}}\right) \implies \frac{C'}{C} = 0.75 \times K
$$

In this case, the plate-charge Q in the capacitor remains unchanged. So

$$
CV = C'V' \implies \frac{V}{V'} = \frac{C'}{C} \implies \frac{V}{V'} = 0.75 \times K
$$

$$
\implies K = \frac{V}{V' \times 0.75} = 1.18
$$