

General Physics II for Biological Sciences (Phy 122)

Fall Semester 2024-2025

Final Examination

December 30, 2024 Time: 8:00 AM to 10:00 AM

Instructor: Dr. S.S.A. Razee

Solution

Fundamental Constants

) Permitivity of free space Permeability of free space Elementary unit of charge $Mass of an electron$ $Mass of a proton$ Mass of a neutron Atomic mass unit Conversion from eV to J

Avogadro's number

² Coulomb's constant

Prefixes of units

Instructions to the Students:

- All communication devices must be switched off and placed in your bag. Anyone found using a communication device will be disqualified.
- Programmable calculators, which can store equations, are not allowed.

1. In the figure, Q_1 and Q_2 are point charges. It is given that the net electric potential at the point P is $V_P = 0$. If $Q_1 = -3.0$ nC, find the **magnitude** and the **direction** of the net electric field \vec{E} at the point P. \vert 4 points

Solution: The net electric potential at P is zero. So

$$
\frac{kQ_1}{0.5} + \frac{kQ_2}{0.3} = 0 \implies Q_2 = -Q_1 \times \frac{0.3}{0.5} = +1.8 \times 10^{-9} \text{ C}
$$

At P, both the electric fields, \vec{E}_1 and \vec{E}_2 are to the left (in $-x$ direction). Now,

$$
E_1 = \frac{k|Q_1}{0.5^2} = 108 \text{ N/C} \qquad E_2 = \frac{k|Q_2}{0.3^2} = 180 \text{ N/C}
$$

So the magnitude of the net electric field is

$$
E = E_1 + E_2 = 288
$$
 N/C

and the direction is to the left (in the $-x$ direction).

- 2. Two point charges, Q_1 and Q_2 , of identical mass $m = 2.0 \times 10^{-12}$ kg were released from rest when they were 1.5 m from each other. They were found to travel with speed $v = 200$ m/s when the distance between them was 70 cm. The charge $Q_1 = +3.0$ nC.
	- (a) Find Q_2 . \vert 3 points
	- (b) Find the magnitude of their acceleration when they were 70 cm apart. $\vert 2$ points

Solution: Then the work energy principle implies,

$$
0 + \frac{kQ_1Q_2}{1.5} = 2 \times \frac{1}{2}mv^2 + \frac{kQ_1Q_2}{0.6}
$$

$$
\implies Q_2 \left[\frac{kQ_1}{1.5} - \frac{kQ_1}{0.6} \right] = mv^2 \implies Q_2 \times (-20.57) = 8.0 \times 10^{-8}
$$

$$
\implies Q_2 = -3.89 \times 10^{-9} \text{ C}
$$

The magnitude of the force between them when they are 60 cm apart is

$$
F = \frac{k|Q_1Q_2|}{0.6^2} = 2.92 \times 10^{-7} \text{ N}
$$

The magnitude of the acceleration is

$$
a = \frac{F}{m} = 1.46 \times 10^5
$$
 m/s²

3. A parallel-plate capacitor of plate-area $A = 17$ cm² has a slab of same area but thickness $d_1 = 2$ mm and dielectric constant $K = 1.2$ as shown in the figure. The thickness of air inside the capacitor is $d_2 = 5$ mm.

Solution: The capacitor can be considered as two capacitors C_1 and C_2 in series, with

$$
C_1 = K\varepsilon_0 \frac{A}{d_1} = 1.2 \times (8.85 \times 10^{-12}) \times \frac{17 \times 10^{-4}}{2.0 \times 10^{-3}} = 9.0 \times 10^{-12} \text{ F}
$$

$$
C_2 = \varepsilon_0 \frac{A}{d_2} = (8.85 \times 10^{-12}) \times \frac{17 \times 10^{-4}}{5.0 \times 10^{-3}} = 3.0 \times 10^{-12} \text{ F}
$$

The capacitance is

$$
C = \frac{C_1 C_2}{C_1 + C_2} = 2.25 \times 10^{-12} \text{ F}
$$

The energy in the capacitor is

PE =
$$
\frac{1}{2}CV^2 = 4.05 \times 10^{-11}
$$
 J

- 4. In the circuit shown, $\varepsilon = 45$ V and $R_1 = 2 \Omega$. The current in R_1 is $I_1 = 5$ A and the power dissipated by R_2 is $P_2 = 75$ W.
	- www *R1* (a) Find R_2 . \vert 3 points (b) Find R_3 . \vert 3 points *R2* ε *^R³*

Solution: We can calculate

$$
V_1 = I_1 R_1 = 10 \, \text{V}
$$

 R_2 and R_3 are parallel and then \mathcal{R}_{23} is in series with \mathcal{R}_1 $\implies V_1 + V_{23} = \varepsilon \implies V_{23} = 35 \text{ V}$ $V_2 = V_3 = 35$ V $I_2 + I_3 = I_1 = 5$ A 2 $\overline{2}$

$$
PE_2 = \frac{V_2^2}{R_2} \implies R_2 = \frac{V_2^2}{PE_2} = 16.3 \text{ }\Omega
$$

$$
I_3 = I_1 - I_2 = I_1 - \frac{V_2}{R_2} = 2.86 \text{ A}
$$

$$
R_3 = \frac{V_3}{I_3} = 12.25 \text{ }\Omega
$$

5. Two long straight wires perpendicular to the xy−plane are shown. The wire carrying $I_1 = 9$ A passes through the origin and the wire with unknown current I_2 passes through the x–axis at -48 cm. The point P is on the y–axis at 36 cm. It is observed that the x–component of the net magnetic field $B_x = 0$ at the point P.

(b) Find the value of the current I_2 . \vert 3 points

 $B_{1,x}$ and $B_{2,x}$ cancel out each other. So their magnitudes must be equal. Then

$$
\frac{\mu_0 I_1}{2\pi (0.36)} = \frac{\mu_0 I_2}{2\pi (0.60)} \times \frac{0.36}{0.60}
$$

$$
\implies I_2 = I_1 \times \frac{0.60^2}{0.36^2} \implies I_2 = 25 \text{ A}
$$

(c) Find the y–component (B_y) of the net magnetic field at P (your answer should reflect the direction of the net magnetic field). 2 points

$$
B_y = -B_2 \times \frac{0.48}{0.60} = -\frac{\mu_0 I_2}{2\pi (0.6)} \times \frac{0.48}{0.60} = -6.7 \times 10^{-6} \text{ T}
$$

6. A charge particle of mass $m = 1.17 \times 10^{-26}$ kg enters a region of uniform magnetic field of magnitude $B = 5.0 \times 10^{-3}$ T with its velocity perpendicular to the magnetic field, and exits the region after completing a semicircular path of radius $R = 4.0 \times 10^{-3}$ m as shown below. The magnitude of the charge on the particle is $|q| = 4.8 \times 10^{-19}$ C.

$$
R = \frac{mv}{B|q|} \implies v = \frac{B|q|R}{m} = 820 \text{ m/s}
$$

(c) If this particle is to pass straight through the region, an electric field must also be applied. In which direction it should be applied? \vert 1 point (Tick the correct answer)

(d) What must be the **magnitude of the electric field?** \vert 1 point

$$
E = v = 4.1
$$
 N/C

- 7. A 2.0 cm high object is placed 30 cm from a concave mirror of focal length 40 cm.
	- (a) What is the image distance d_i ?

Solution: We have

$$
h_o = 2 \text{ cm}, \quad d_o = 30 \text{ cm}, \quad f = +40 \text{ cm}
$$

$$
\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} = -0.0083 \implies \boxed{d_i = -120 \text{ cm}}
$$

(b) Is the image real or virtual? (Tick the correct answer) \vert 1 point

Real Image │ │ │ Virtual Image

(c) What is the height of the image? 1 point

$$
\frac{h_i}{h_o} = \frac{-d_i}{d_o} = +4 \implies h_i = +4h_o = +8 \text{ cm}
$$

- 8. A 4 cm high object is placed 20 cm from a lense. The image is upright and 6 cm high.
	- (a) Find the focal length of the lense.

Solution: We have

$$
h_o = 4 \text{ cm}, \quad h_i = +6 \text{ cm}, \quad d_o = 20 \text{ cm}
$$

$$
\frac{-d_i}{d_o} = \frac{h_i}{h_o} = +1.5 \implies d_i = -1.5 \times d_o = -30 \text{ cm}
$$

$$
\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_o} = +0.0167 \implies f = +60 \text{ cm}
$$

(b) If we want to see an inverted image of hight 6 cm, at what distance from the lense the object should be placed? \vert 2 points

$$
h_i = -6 \text{ cm}
$$

$$
\frac{-d_i}{d_o} = \frac{h_i}{h_o} = -1.5 \implies d_i = +1.5 \times d_o
$$

$$
\frac{1}{d_o} + \frac{1}{1.5 \times d_o} = \frac{1}{f} \implies \frac{1}{d_o} \times 1.6667 = \frac{1}{f} \implies \boxed{d_o = 100 \text{ cm}}
$$

$$
\mid 3 \text{ points}
$$

9. Consider the isotope $_{11}^{23}$ Na. Find the binding energy of the **last neutron** in this isotope. Express your answer in MeV. \parallel 3 points

The nuclear mass of some isotopes are given here:

The nuclear reaction equation is

$$
^{23}_{11}Na \rightarrow \rm {^{22}_{11}Na+n}
$$

So the binding energy of the last neutron is

$$
BE = [21.988398 + 1.008665 - 22.983731] \times 931.5 \text{ MeV} = 12.4 \text{ MeV}
$$

- 10. The $^{68}_{32}$ Ge isotope is radioactive with a half-life of $T_{\frac{1}{2}} = 270$ days. A 5 μ g sample of the isotope is kept in a container.
	- (a) What is the decay constant? 1 point

The decay constant is

$$
\lambda = \frac{0.693}{T_{\frac{1}{2}}} = \frac{0.693}{270 \times 24 \times 3600} = 2.97 \times 10^{-8} \text{ s}^{-1}
$$

(b) How many atoms of the sample are present initially? $\|$ 1 point

$$
N_0 = \frac{N_A}{68} \times (5 \times 10^{-6}) = 4.43 \times 10^{16}
$$

(c) How many atoms of ${}^{68}_{32}$ Ge will remain in the sample after 3 years? 2 points

$$
t = 365 \times 3 \times 24 \times 3600 = 9.46 \times 10^7
$$
 s

$$
N = N_0 e^{-\lambda t} = 2.67 \times 10^{15}
$$

(d) What will be the **activity** of the sample after 3 years? \vert **1 point**

$$
R = \lambda N = 7.92 \times 10^7 \, \text{s}^{-1}
$$