

Kuwait University $\frac{1}{2}$ Physics Department

KUWAIT UNIVERSITY

Physics 101

Fall Semester

Final Exam Saturday, December 28, 2024 5:00 pm – 7:00 pm

Student's Name: ………………………………. Serial Number: ….………… Student's Number: ……………………………………Section: …………………… Choose your Instructor's Name: Instructors: Drs. Al Dosari, Al Jassar, Al Qattan, Al Refai, Al Smadi, Askar, Demir, Sylvach, Zaman Grades: # \parallel SP1 \parallel SP2 \parallel SP3 \parallel SP2 SP6 \parallel SP7 \parallel LP1 \parallel LP2 \parallel LP3 \parallel Q1 \parallel Q₂ \parallel Q₃ \parallel Q4 \parallel Total Pts 3 3 3 3 3×3 3 3 5 5 5 \sim 1 1 1 40 **Important**: The Structors User Chapter of Structure
 For Instructors users
 For Instructors users

Grades:

SPI SP2 SP3 SP

SP6 SP7 UPI LP2 L

3 3 3 3 3 3 3 3 3 3 5 5 5 **Model Answer**

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 40 points as arranged in the above table.
- 3. **Give your final answer in the correct units.**
- 4. Assume $g = 10 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. **Cheating incidents will be processed according to the university rules.**

GOOD LUCK

Part I: Short Problems (3 points each)

SP1. A wheel slows down from $\omega_i = 20 \text{ rad/s}$ to $\omega_f = 12 \text{ rad/s}$ in 5 s under a constant angular acceleration. Find the angular displacement $(\Delta \theta)$, in radians, during these 5 s.

$$
\omega_f = \omega_i + \alpha t
$$

\n
$$
\alpha = \frac{12 - 20}{5} = -1.6 \text{ rad/s}^2
$$

\n
$$
\Delta \theta = \omega_i t + \frac{1}{2} \alpha t^2 = 20 \times 5 + 0.5 \times -1.6 \times 25 = 80 \text{ rad}
$$

OR

$$
\Delta \theta = \left(\frac{\omega_i + \omega_f}{2}\right) \Delta t = \left(\frac{20 + 12}{2}\right) 5 = 80 rad
$$

SP2. A rocket moves along the x-axis. Its position as a function of time is given by $x(t) = 4t - 5t^3$, where *t* is in seconds and *x* is in meters. **Find the <u>average acceleration (in** m/s^2 **)</u> between** $t = 0$ *s* **and** $t = 2$ *s***.**

$$
v = \frac{dx}{dt} = 4 - 15t^2
$$

$$
\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v(2) - v(0)}{2 - 0} = \frac{[4 - 15(2^2)] - [4 - 10(0^2)]}{2} = -30 \, m/s^2
$$

SP3. A ball is projected from a window of a building of height (h). The ball is given an initial speed of $8 m/s$, as shown. If the horizontal distance $\Delta x = 22.6 m$, find the height *h* (in *m*).

$$
\Delta x = 22.6 \, m = v_0 \sin(70^\circ)(t) = 8 \times 0.94 \times t
$$
\n
$$
t = 3 \, s
$$
\n
$$
\Delta y = -v_0 \cos(70^\circ)t - \frac{1}{2}gt^2
$$
\n
$$
\Delta y = -8.2 - 5(9) = -53.2 \, m
$$
\n
$$
h = 53.2 \, m
$$

SP4: A 0.4 kg block compresses a spring $(k = 370 N/m)$ a distance $x = 20 cm$, then the block is **released from rest** at point A. Find the speed (in m/s) of the block when the spring is relaxed (at point B).

$$
E_A = E_B
$$

\n
$$
\frac{1}{2}kx^2 = \frac{1}{2}mv^2 + mgx
$$

\n
$$
\frac{1}{2} \times 370 \times 0.2^2 = \frac{1}{2} \times 0.4 \times v^2 + 0.4 \times 10 \times 0.2
$$

\n
$$
v = 5.74 \, m/s
$$

SP5. A 6 kg stone **rests** at the origin explodes into two masses $m_1 = 2 kg$ and $m_2 = 4 kg$, as shown. After the explosion, m_1 moves with a speed $v_{1f} = 5$ m/s , 30° north of east. **Find the final velocity of** m_2 **, in unit vector notation**.

$$
\sum \vec{p}_i = \sum \vec{p}_f
$$

\n
$$
M\vec{v}_i = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f}
$$

\n
$$
0 = 2(5cos30\hat{i} + 5sin30\hat{j}) + 4(\vec{v}_{2f})
$$

\n
$$
\vec{v}_{2f} = (-2.17\hat{i} - 1.25\hat{j}) m/s
$$

SP6. A system consists of three small disks rotating about an axis that passes through disk C and parallel to the line connecting B and A as shown. The angular position of the disk B is given by $\theta(t) = -5t + 2t^3$, where t is in seconds and θ is in radians. **Find the rotational kinetic energy (in** *)* **of the system at** $t = 2s$ **.**

SP7: Two masses, $m_1 = 4$ kg and $m_2 = 14$ kg, are connected by a light rope that passes over a fixed **frictionless and <u>massless</u> pulley**, as shown. m_1 rests on m_2 and a force $|\vec{F}| = 28 N$ is applied on m_1 . The surface between the two blocks is **rough** ($\mu_k = 0.25$). The surface on which m_2 rests is **frictionless**. Find the magnitude of the system's acceleration (in m/s^2).

For m_1

 $T - \mu_k m_1 g = m_2 a$ $T - 10 = 14a$ $a = 0.44 \, m/s^2$

Part III: Long Problems (5 points each)

LP1. A bullet of mass of $m_1 = 50$ g moves horizontally with a speed of $v_1 = 250$ m/s makes a **completely inelastic collision** with a ball of mass $m_2 = 4 kg$, suspended like a pendulum from a rope of length $L = 2 m$. After the impact, the system swings up to a maximum height h, as shown.

a) What is the speed of the system v_2 immediately after the collision?

$$
\sum \vec{p}_i = \sum \vec{p}_f
$$

\n
$$
m_1 v_1 = (m_1 + m_2) v_2
$$

\n
$$
v_2 = \frac{m_1 v_1}{m_1 + m_2} = \frac{0.05(250)}{4.05} = 3.1 \, m/s
$$

(b) Find the tension in the rope immediately after the collision (at point A).

$$
T - Mg = M \frac{v_2^2}{L}
$$

$$
T = M \left(g + \frac{v_2^2}{L} \right) = 4.05 \left(10 + \frac{3.1^2}{2} \right) = 60 N
$$

(c) Find the maximum height () of the system.

$$
E_i = E_f
$$

\n
$$
\frac{1}{2}Mv_2^2 = Mgh
$$

\n
$$
h = \frac{v_2^2}{2g} = \frac{3.1^2}{2(10)} = 0.48 m
$$

LP2. Two blocks ($m_1 = 6$ kg, $m_2 = 4$ kg) are connected by a light rope passing over a frictionless pulley with a radius $R = 0.3$ m and a moment of inertia $I = 1.44$ $kg \cdot m^2$. The rope does not slip on the disk rim. The masses m_1 and m_2 are released **from rest**. The tabletop is **rough** ($\mu_k = 0.2$).

(a) If the tension in the vertical rope $T_1 = 48 N$,

find the acceleration of the system.

$$
m_1 g - T_1 = m_1 a
$$

\n
$$
a = g - \frac{T_1}{m_1} = 10 - \frac{48}{6} = 2 m/s^2
$$

(b) Find the tension in the horizontal part of the rope, T_2 .

$$
T_2 - \mu_k m_2 g = m_2 a
$$

\n
$$
T_2 = m_2 (a + \mu_k g) = 4(2 + 0.2(10)) = 16 N
$$

(c) Find the net torque (magnitude and direction) generated on the pulley.

$$
\sum \tau = I\alpha = I\frac{a}{R}
$$

$$
\sum \tau = 1.44 * \frac{2}{0.3} = 9.6 N.m
$$

into the page

or

$$
\sum \tau = (T_1 - T_2)R = (48 - 16)0.3 = 9.6 \text{ N} \cdot \text{m}, \text{ into the page.}
$$

LP3. A 2 kg block slides along a smooth surface before entering a **rough path** in the shape of a quarter circle of radius $R = 6$ m, as shown. **The work done by friction** between point B and point C is -36 .

(a) Find the speed of the block at point C.

$$
W_{fr} = E_c - E_A
$$

\n
$$
W_{fr} = \frac{1}{2} m v_c^2 + m g y_c - \frac{1}{2} m v^2
$$

\n
$$
-36 = \frac{1}{2} (2) v_c^2 + 2(10)(3) - \frac{1}{2} (2)(11.3)^2
$$

\n
$$
v_c = 5.63 \, m/s
$$

(b) Draw a free-body diagram for the block at point C.

(c) Find the magnitude of the normal force at point C.

$$
n_c - mg\cos 60 = \frac{mv_c^2}{R}
$$

$$
n_c = m(\frac{v_c^2}{R} + g\cos 60) = 2(\frac{5.63^2}{6} + 10\cos 60) = 20.7 N
$$

(d) Which of the following vectors represents the block's tangential acceleration direction at point C?

Part III: Questions (Choose the correct answer, one point each)

Q1. Which of the following is **NOT** an example of **a conservative force**?

- * Gravitational force.
- * Elastic force.
- **S** Friction force.
	- * All of the above are examples of conservative forces.

Q2. A velocity-time graph for an object moving along the x-axis is shown below. At $t = 2$ s, the **acceleration of the object is:** v_r (cm/s)

 \circledast Constant in the $-x$ direction.

* Zero.

Q3. A and B are two wheels connected by a belt that does not slip and runs with **a constant linear speed v**. If $R_A = 2R_B$, then the relation between their angular accelerations α is:

Q4. The **linear momentum** as a function of time is shown for an object moving along the +x axis. **In which region is the magnitude of the net force** $|\vec{F}|$ **on the object the greatest?**

- * Region 2.
- * Region 3.
- * Region 4.

