

Physics 122

Final Exam, Fall Semester 2023 December 30, 2023

Time: 11:00 am – 1.00 p.m.

Name.....

Student No.....

Instructor: Prof. M.M. Sharma

(Fundamental Constants)					
$k = \frac{1}{4\pi\varepsilon_{o}} = 9.0 \times 10^{9} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}$	(Coulomb's constant)				
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)				
$\mu_0=4\pi\times10^{\text{-7}}~T.m/A$	(Permeability of free space)				
$e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)				
$N_A = 6.022 \times 10^{23}$	(Avogadro's number)				
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)				
$m_e = 9.1 \times 10^{-31} \text{ kg}$	(Electron mass)				
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)				

Prefixes of units

$m = 10^{-3}$	$\mu = 10^{-6}$	$n = 10^{-9}$	$p = 10^{-12}$
$k = 10^3$	$M = 10^{6}$	$G = 10^9$	$T = 10^{12}$

Important Instructions to the students:

- 1. Answer all the questions.
- 2. The solution should be given explicitly for each problem.
- 3. Mobiles or other electronic devices are strictly prohibited during the exam.
- 4. Programmable calculators, which can store equations, are not allowed.
- 5. Cheating incidents will be processed according to the university rules.

For use by the instructor only

Prob.	1	2	3	4	5	6	7	8	9	10
Marks										

1. Three charges $q_1 = 10 \ \mu\text{C}$, $q_2 = 20 \ \mu\text{C}$ and $q_3 = -30 \ \mu\text{C}$ are located in the *x*-*y* plane as shown in the figure. What is the magnitude of the resultant force on the charge q_2 ? [5 points]

$$F_{21} = k \frac{|q_2||q_1|}{r_{21}^2} = \frac{9 \times 10^9 \times 20 \times 10^{-6} \times 10 \times 10^{-6}}{(0.03)^2}$$

$$= 2000 \text{ N/C}$$

$$F_{23} = k \frac{|q_2||q_3|}{r_{23}^2} = \frac{9 \times 10^9 \times 20 \times 10^{-6} \times 30 \times 10^{-6}}{(0.03^2 + 0.04^3)}$$

$$= 2160 \text{ N/C}$$

$$F_x = F_{21} - F_{23} \cos \theta = 2000 - 2160 \times \frac{0.03}{0.05} = 704 \text{ N/C}$$

$$F_y = -F_{23} \sin \theta = -2160 \times \frac{0.04}{0.05} = -1728 \text{ N/C}$$

$$F_{net} = \sqrt{F_x^2 + F_y^2} = 1866 \text{ N}$$

2. Two charges $Q_1 = 50$ nC and Q_2 are located as shown in the figure. What should be the magnitude and sign of charge Q_2 so that the net electric field at the point P is E = 675 N/C directed along +*x*-axis? [3 points]

$$E_{1} = k \frac{|Q_{1}|}{(0.30 + 0.20)^{2}} = 1800 \text{ N along } + x \text{ axis}$$

$$E_{2} = k \frac{|Q_{2}|}{(0.20)^{2}}$$

$$E = E_{1} + E_{2}$$

$$E_{2} = 675 - 1800 + E_{2}$$

$$E_{2} = 675 - 1800 = -1125 \text{ N/C (must be along -x-axis)}$$

$$k \frac{|Q_{2}|}{(0.20)^{2}} = -1125 \rightarrow$$

$$Q_{2} = -5 \times 10^{-9} \text{ C} = 5.0 \text{ nC}$$

- 3. Two charges $Q_1 = 20 \ \mu\text{C}$ and $Q_2 = -15 \ \mu\text{C}$ are located at the corners of a right-angled triangle, with a = 0.30 m, as shown in the figure.
 - (a) What is the potential difference $V_{\rm B} V_{\rm A}$? [4 points] (b) How much work must be done to move charge Q = 5 uC from A to B² [1 point]
 - (b) How much work must be done to move charge $Q = 5 \mu C$ from A to B? [1 point]

(a)
$$r_{1B} = r_{2B} = \frac{a\sqrt{2}}{2} = 0.21 \text{ m}$$

 $V_A = V_{Q_1} + V_{Q_2} = k \frac{Q_1}{0.30} + k \frac{Q_2}{0.30} = 1.5 \times 10^5 \text{ V}$
 $V_B = V_{Q_1} + V_{Q_2} = k \frac{Q_1}{0.21} + k \frac{Q_2}{0.21} = 2.1 \times 10^5 \text{ V}$
 $V_B - V_A = 0.6 \times 10^5 \text{ V}$
(b) $W_{ext} = Q\Delta V = Q(V_B - V_A) = 0.30 \text{ J}$

4. Two capacitors $C_1 = 8 \ \mu\text{F}$ and $C_2 = 12 \ \mu\text{F}$ are connected in series across a 10 V battery, as shown. The battery is disconnected, and the capacitors are then connected in parallel with positive plates connected to each other and negative plates connected together. What is the charge across C_1 now? [4 points]

$$C_{s} = \frac{C_{1}C_{2}}{C_{1} + C_{2}} = \frac{8 \,\mu\text{F} \cdot 12 \,\mu\text{F}}{8 \,\mu\text{F} + 12 \,\mu\text{F}} = 4.8 \,\mu\text{F}$$

Initial charge Q on C₁ and C₂:
$$Q = C_{eq}V = 4.8 \,\mu\text{F} \times 10 \,\text{V} = 48 \,\mu\text{C}$$
When connected in parallel:
Voltage across C₁ and C₂:
$$V = \frac{Q_{total}}{C_{eq}} = \frac{48 \,\mu\text{C} + 48 \,\mu\text{C}}{(8 \,\mu\text{F} + 12 \,\mu\text{F})} = 4.8 \,\text{V}$$
$$q_{1} = C_{1}V = 8 \,\mu\text{F} \times 4.8 \,\text{V} = 38.4 \,\mu\text{C}$$

- 5. A resistor $R = 7.8 \Omega$ is connected to a battery with an internal resistance *r* and the emf $\varepsilon = 6$ V. The energy dissipated in the resistor *R* in 5 minutes is 0.96 kJ.
 - (a) What is the rate of power dissipated in the resistor R?
 - (b) What is the current in the circuit?
 - (c) What is the internal resistance *r*?

(a)
$$P = \frac{E}{t} = \frac{0.96 \times 10^{3} \text{J}}{5 \times 60 \text{ s}} = 3.2 \text{ W}$$

(b) $P = I^{2}R \rightarrow I = \sqrt{\frac{P}{R}} = 0.64 \text{ A}$
(c) $I = \frac{\varepsilon}{R+r}$
 $R + r = \frac{\varepsilon}{I} = 9.38 \Omega$
 $r = 9.38 - R = 1.58 \Omega$

6. Three parallel wires are placed perpendicular to the page, each carrying a current of I = 12 A, as shown. The current in wires A and C is out of the page and in wire B it is into the page. What is the magnitude and direction of the resultant force on 2 m length of the wire C? [3 points]

$$F_{CA} = \frac{\mu_0 I_C I_A L}{2\pi d} = 4.8 \times 10^{-3} \text{ N along } -x \text{ axis}$$

$$F_{CB} = \frac{\mu_0 I_C I_A L}{2\pi d} = 7.2 \times 10^{-3} \text{ N along } +x \text{ axis}$$

$$F_{net} = F_{CB} - F_{CA} = 2.4 \times 10^{-3} \text{ N along } +x \text{ axis}$$

7. Two long parallel conductors carry currents $I_1 = 8.0$ A and $I_2 = 20.0$ A in the directions shown. What is the *x*-component of the net magnetic field at point P? [4 points]

$$B_{1} = \frac{\mu_{0}I_{1}}{2\pi r_{1}} = \frac{4\pi \times 10^{-7} \times 8.0}{2\pi \times 0.08} = 2.0 \times 10^{-5} \text{ T along -x axis}$$

$$B_{2} = \frac{\mu_{0}I_{2}}{2\pi r_{2}} = \frac{4\pi \times 10^{-7} \times 20.0}{2\pi r_{2}} = 4.0 \times 10^{-5} \text{ T}$$
at angle θ above x-axis
$$B_{x} = -B_{1} + B_{2} \cos \theta = -2.0 \times 10^{-5} \text{ T} + 4.0 \times 10^{-5} \text{ T} \times \frac{0.08}{0.10}$$

$$= 1.2 \times 10^{-5} \text{ T}$$

$$B_{x} = -B_{1} + B_{2} \cos \theta = -2.0 \times 10^{-5} \text{ T} + 4.0 \times 10^{-5} \text{ T} \times \frac{0.08}{0.10}$$

- 8. An object of height 5.0 cm is placed 10.0 cm from a lens with a power of +5.00 D.
 - (a) What is the focal length of the lens?
 - (b) What will be the location of the image?
 - (c) Will the image be inverted or upright?
 - (d) What will be the height of the image?
 - (e) Is the image real or imaginary?

(a) $f = \frac{1}{p} = \frac{1}{5.00 \ m^{-1}} = 0.20 \ m = 20 \ cm$ (b) $\frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_0} = \frac{1}{20 \ cm} - \frac{1}{10 \ cm} = -0.05 \ cm^{-1}$ $d_1 = -20.0 \ cm$ on the same side as object (c) $m = -\frac{d_i}{d_0} = -\frac{-20.0 \ cm}{10.0 \ cm} = 2.0 \ the image is upright and magnified.$ (d) $h_i = mh_o = 2.0 \times 5.0 \ cm = 10.0 \ cm$ (e) The image is imaginary. [1 points] [1 point]

[1 point]

- [1 point]
- [1 point]

- 9. The binding energy of the last neutron in a nucleus of ¹⁵N is 10.83 MeV. Given M(¹⁴N) = 14.003074 u, M(n) = 1.008665 u, and M(¹H) = 1.007825 u. (a) What is the mass of ¹⁵N?
 - (b) What is the binding energy per nucleon of ^{15}N ?

[2 points] [2 points]

(a) Binding energy of the last neutron in ¹⁵N: ¹⁵N = ¹⁴N + n BE_n = $(M(^{14}N) + M(n) - M(^{15}N))c^{2}$ 10.83 MeV = $(14.003074 \text{ u} + 1.008665 \text{ u} - M(^{15}N)) \times 931.5 \text{ MeV}$ $M(^{15}N) = 15.000113 \text{ u}$ (b) ¹⁵N = $7(^{1}H) + 8n$ BE $(^{15}N) = (7 \times M(^{1}H) + 8 \times M(n) - M(^{15}N))c^{2}$ = $(7 \times 1.007825 \text{ u} + 8 \times 1.008665 \text{ u} - 15.000113 \text{ u}) \times 931.5 \text{ MeV}$ = 115.49 MeV= $\frac{115.49 \text{ MeV}}{15} = 7.699 \text{ MeV/nucleon}$

10. For the isotope ¹⁸F (half-life = 110 min.) given to a patient in the Positron Emission Tomography (PET), the decay rate becomes 180 per second after 30 hours.

(a) What was the decay rate initially?	[2 points]
(b) How many ¹⁸ F nuclei were present in the beginning?	[1 point]
(c) How much amount of ¹⁸ F (in gram) was present initially?	[1 point]

(a)
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{110 \times 60 \text{ s}} = 1.05 \times 10^{-4} \text{ s}^{-1}$$

 $R = R_0 e^{-\lambda t}$
 $R_0 = R e^{\lambda t} = 180 \text{ s}^{-1} \times e^{1.05 \times 10^{-4} \text{ s}^{-1} \times (30 \times 60 \times 60 \text{ s})}$
 $= 1.51 \times 10^7 \text{ s}^{-1}$
(b) $R_0 = \lambda N_0$
 $N_0 = \frac{R_0}{\lambda} = \frac{1.51 \times 10^7 \text{ s}^{-1}}{1.05 \times 10^{-4} \text{ s}^{-1}} = 1.44 \times 10^{11} \text{ nuclei}$
(c) $N = \frac{N_A}{Mol \text{ (gram)}} \times m(\text{gram})$
 $m(\text{gram}) = \frac{N \times Mol \text{ (gram)}}{N_A}$
 $= \frac{1.44 \times 10^{11} \times 15}{6.02 \times 10^{23}} = 3.59 \times 10^{-12} \text{ gram}$