

General Physics II

Physics Department

PHY 102

 $T = 10^{12}$

Second Midterm Examination Summer Semester 2023 – 2024

July 20, 2024 Time: 11:30 – 1:00 PM

Name:	Student No:
Section No:	Serial No:

Instructors: Drs. Alfailakawi, Lajko, and Vagenas

Fundamental constants

$k = \frac{1}{4\pi\epsilon_{a}} = 9.0 \times 10^{9} \text{ N.m}^{2} / \text{C}^{2}$	(Coulomb constant)					
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)					
$\mu_0=4\pi\times 10^{\text{-7}} \text{ T.m/A}$	(Permeability of free space)					
$ e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)					
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)					
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)					
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)					
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)					
$\frac{\text{Prefixes of units}}{m = 10^{-3}} \mu = 10^{-6}$ k = 10 ³ M = 10 ⁶	$n = 10^{-9} \qquad p = 10^{-12}$ G = 10 ⁹ T = 10 ¹²					

For use by Instructors only

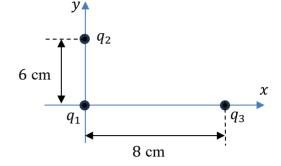
 $k = 10^{3}$

Problems	1	2	3	4	5	6	7	8	Questions	Total
Marks										

 $G = 10^9$

Instructions to the Students:

- 1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.

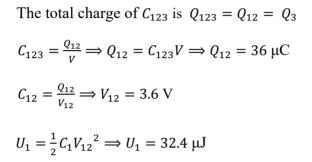

 $M = 10^{6}$

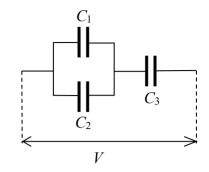
3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

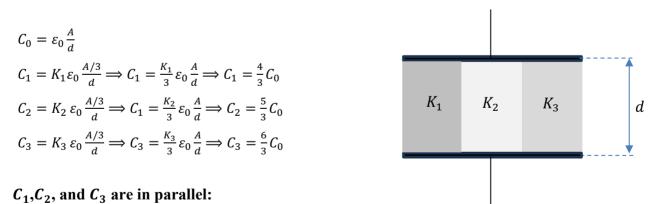
1. Three point charges $q_1 = q_2 = 10$ nC, and q_3 are placed on the x and y-axis as shown. The total potential energy of the system is 20 µJ. Find the electric charge q_3 . [4 points]

$$d = \sqrt{(0.06)^2 + (0.08)^2} \text{ m} \Longrightarrow d = 0.10 \text{ m}$$
$$U_{total} = k \frac{q_1 q_2}{0.06} + k \frac{q_1 q_3}{0.08} + k \frac{q_2 q_3}{0.10}$$
$$20 \times 10^{-6} = 15 \times 10^{-6} J + 1125 q_3 + 900 q_3$$
$$q_3 = 2.47 \text{ nC}$$


2. A conducting sphere of radius R = 0.4 m is uniformly charged with electric charge Q = 30 nC. A point charge q = 5 nC is placed at the center of the sphere. Find the potential difference V_A - V_B. Given: x_A = 0.2 m and x_B = 0.9 m. [3 points]



3. In the capacitor network shown, $C_1 = C_2 = 5 \ \mu\text{F}$, $C_3 = 30 \ \mu\text{F}$, and the applied potential difference is V = 4.8 V. Find the electric potential energy stored in capacitor C_1 . [5 points]


 C_1 and C_2 are in parallel: $C_{12} = C_1 + C_2 \Longrightarrow C_{12} = 10 \ \mu\text{F}$

 C_{12} and C_3 are in series: $C_{123} = \frac{C_{12}C_3}{C_{12}+C_3} \Longrightarrow C_{123} = 7.5 \,\mu\text{F}$

4. An air-filled parallel-plate capacitor with a plate area A and separation d, has capacitance C_0 . Then, the capacitor is partially filled with three dielectric slabs with constants $K_1 = 4$, $K_2 = 5$, $K_3 = 6$, as shown. Each dielectric slab fills 1/3 of the space between the capacitor plates. If the equivalent capacitance is 200 µF, find the initial capacitance C_0 . [5 points]

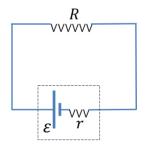
 $C_{eq} = C_1 + C_2 + C_3 \Longrightarrow C_{eq} = \frac{4}{3}C_0 + \frac{5}{3}C_0 \frac{6}{3}C_0 \Longrightarrow C_{eq} = \frac{15}{3}C_0 \Longrightarrow C_0 = 40 \ \mu\text{F}$

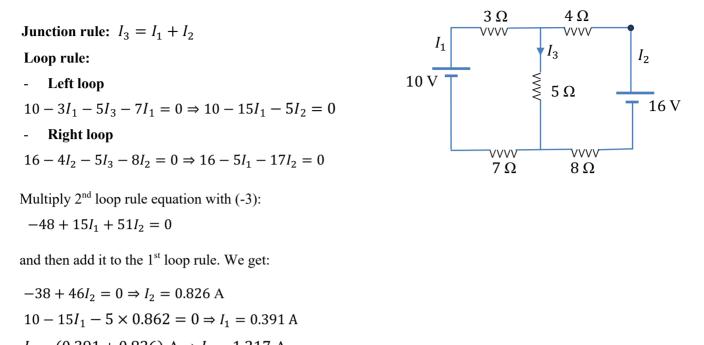
5. A gold wire of length L = 3 m has resistivity $\rho = 2.44 \times 10^{-8} \ \Omega \cdot m$ and concentration of free electrons $n = 5.90 \times 10^{28} \ m^{-3}$. When a potential difference V is applied, the electrons run the full length of the gold wire in time 2×10^4 s. Find the potential difference V. [4 points]

$$v_d = \frac{L}{t} \Longrightarrow v_d = \frac{3 m}{2 \times 10^4 s} \Longrightarrow v_d = 1.5 \times 10^{-4} m/s$$

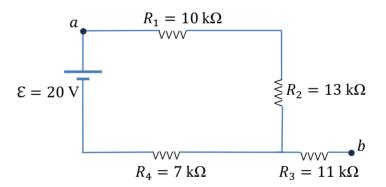
 $J = n|e| v_d \Longrightarrow J = 14.16 \times 10^5 \text{ A/m}^2$

 $E = \rho J \Longrightarrow E = 0.0346 \text{ N/C}$


$$E = \frac{V}{L} \Longrightarrow V = EL \Longrightarrow V = 0.104 \text{ V}$$


6. In the electric circuit below, the power dissipated on the resistor $R = 3 \Omega$ is $P_R = 15$ W. The internal resistance of the battery is $r = 1 \Omega$. Find the emf ε of the battery. [3 points]

$$P_{R} = I^{2} R \Rightarrow I = \sqrt{\frac{P_{R}}{R}} \Rightarrow I = 2.24 \text{ A}$$


$$P_{R} = \frac{V_{R}^{2}}{R} \Rightarrow V_{R} = \sqrt{P_{R}R} \Rightarrow V_{R} = 6.71 \text{ V}$$
Since $V_{R} = V_{terminal}$

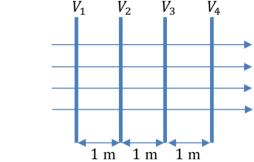
$$V_{terminal} = \mathcal{E} - Ir \Rightarrow \mathcal{E} = V_{R} + Ir \Rightarrow \mathcal{E} = 8.95 \text{ V}$$

- $I_3 = (0.391 + 0.826) \text{ A} \Rightarrow I_3 = 1.217 \text{ A}$
- 8. Find the potential difference between points *a* and *b* in the electric circuit below. [3 Points]

Loop rule:

 $\mathcal{E} - IR_1 - IR_2 - IR_4 = 0 \Longrightarrow I = \frac{\mathcal{E}}{R_1 + R_2 + R_4} \Longrightarrow I = 0.67 \times 10^{-3} \text{ A}$

 $V_a - IR_1 - IR_2 = V_b \Longrightarrow V_a - V_b = I(R_1 + R_2)$

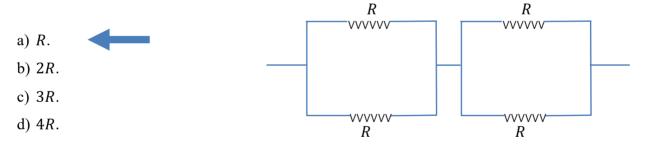

 $V_a - V_b = 15.3 \text{ V}$

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

- 1. Two negative point charges, $q_1 < 0$ and $q_2 < 0$, are placed on the *x*-axis as shown. We bring a positive charge, Q > 0, from infinity to point A. The electric potential at infinity is zero. The work of the electric force to move charge Q from infinity to point A is:
 - a) zero.
 - b) positive. q_1
 - c) negative.
 - d) indetermined.

- 2. In a uniform electric field of magnitude E = 10 V/m, the horizontal lines are the electric field lines while the vertical lines are the equipotential surfaces. If the potential of the first equipotential surface is $V_1 = 95$ V, then $V_2 = V_2$
 - a) $V_2 = 95 \text{ V}, V_3 = 95 \text{ V}, V_4 = 95 \text{ V}.$
 - b) $V_2 = 95 \text{ V}, V_3 = 85 \text{ V}, V_4 = 75 \text{ V}.$
 - c) $V_2 = 85 \text{ V}, V_3 = 75 \text{ V}, V_4 = 65 \text{ V}.$
 - d) $V_2 = 85 \text{ V}, V_3 = 65 \text{ V}, V_4 = 45 \text{ V}.$

- 3. An air-filled parallel-plate capacitor is charged by a battery, then the battery is disconnected and the space between the plates of the capacitor is fully filled with a dielectric slab of constant *K*. Which statement is correct?
 - a) The stored electric potential energy will decrease by a factor K.
 - b) The stored electric potential energy will decrease by a factor 2K.
 - c) The stored electric potential energy will increase by a factor *K*.
 - d) The stored electric potential energy will increase by a factor 2K.
- 4. An air-filled parallel-plate capacitor is charged by a battery. While the battery remains connected, the separation between the plates of the capacitor is doubled. Which statement is correct?
 - a) The electric energy density increases by a factor of 2.
 - b) The electric energy density increases by a factor of 4.
 - c) The electric energy density decreases by a factor of 2.
 - d) The electric energy density decreases by a factor of 4.


5. In the current-voltage diagram below, the characteristic curves of 4 resistors are given. Which relation is correct?

6. The current between points a and b in the electric circuit below is:

7. In the electric circuit below, there are 4 resistors of same resistance *R*. The equivalent resistance of this network is:

- 8. Which statement is wrong?
 - a) Kirchhoff's junction rule is based on the conservation of electric charge.
 - b) Kirchhoff's loop rule is based on the statement that the electrostatic force is conservative.
 - c) Kirchhoff's junction rule is about the sum of currents around any loop.
 - d) Kirchhoff's loop rule is about the sum of potential differences around any loop.