

For Instructors use only

Grades:

Important:

- 1. Answer all questions and problems \mathcal{N}_0 solution = no points).
- 2. Full mark = 20 points as arranged in the bove table.
- 3. Give your final answer in the corrections.
- 4. Assume $g = 10 \text{ m/s}^2$.
- 4. Assume $g = 10 \text{ m/s}^2$.
5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. **Cheating incidents will be processed according to the university rules.**

Part I: Short Problems (2 points each)

SP1. A block is moving along the $x - axis$ under the influence of **a varying net force. The net force as a function of position is shown in the figure. Find the change in the kinetic energy of the block as it moves from** $x = 0$ **m** to $x = 8$ **m**. $F_x(N)$

$$
\Delta K = W_{Fnet} = Area
$$

$$
= (4)60) - (4)(40) = +80 J
$$

SP2. A constant force F is exerted on a 60 kg block, as shown. The block moves vertically upward at constant speed. Find the average power output of the force (F) if the block moves $6m$ in 12 s.

 $W_F = mgh = 60(10)(6) = 3600 J$ $P_{av} =$ W_F t = 3600 $\frac{12}{12}$ = 300 W

SP3. A 1000 kg car is moving with **constant speed**, the car encounters a bump in the road that has a circular cross section, as shown. If the apparent weight of the car as it passes over the top is 7000 N, find its **acceleration at the top in unit vector notation.**

 $mg - n = ma_c$ $\Rightarrow a_c =$ $mg - n$ \boldsymbol{m} = 10000 − 7000 $\frac{1000}{1000} = 3 m/s^2$ $\vec{a} = -3\hat{j} \, m/s^2$

 \bf{B}

SP4. A box of mass $m = 2$ kg is attached to a vertical spring $(k = 100 N/m)$. The box is released from rest at point A, where the spring is relaxed. The box then moves down from point A to point B, covering a distance of $s = 0.2$ *m*. Find the speed of the box at point *B*.

$$
\sum W = \Delta K
$$

\n
$$
W_{mg} + W_{F_s} = \Delta K
$$

\n
$$
mg(s) + \frac{1}{2}k(x_i^2 - x_f^2) = (\frac{1}{2}mv_f^2 - 0)
$$

\n
$$
2(10)(0.2) + \frac{1}{2}100(0^2 - 0.2^2) = (\frac{1}{2}(2)v_f^2 - 0)
$$

\n
$$
v_f = 1.4 \, m/s
$$

Or

$$
E_i = E_f
$$

\n
$$
mg(s) = \left(\frac{1}{2}mv_f^2 + \frac{1}{2}kx_f^2\right)
$$

\n
$$
2(10)(0.2) = \frac{1}{2}(2)v_f^2 + \frac{1}{2}100(0.2^2)
$$

\n
$$
v_f = 1.4 \, m/s
$$

SP5. A block of mas m is sliding down **a frictionless** incline while **a horizontal force** of magnitude (F) is exerted on it, as shown. If $F = mg$, draw the free body diagram of the block and find the angle (θ) of **the incline that allows the block to slide down with constant speed.**

 $mg \sin\theta - F \cos\theta = 0$ $mg \sin\theta = mg \cos\theta$ $sin\theta = cos\theta \Rightarrow tan\theta = 1$ $\Rightarrow \theta = 45^{\circ}$

Part II: Long Problems (3 points each)

LP1. Two blocks of wood ($m_1 = 5$ kg, $m_2 = 15$ kg), are connected by a light rope and pulled to the right along a horizontal **rough surface** ($\mu_k = 0.4$), as shown.

a) Find the acceleration of the system.

$$
F - \mu_k m_1 g - \mu_k m_2 g = (m_1 + m_2)a
$$

$$
a = \frac{F - \mu_k m_1 g - \mu_k m_2 g}{m_1 + m_2} = \frac{120 - (0.4(50)) - (0.4(150))}{20} = 2 m/s^2
$$

b) Find the tension in the rope.

For

$$
T-\mu_k m_2 g=m_2 a
$$

 $T = \mu_k m_2 g + m_2 a = (0.4)(150) + 15(2) = 90 N$

c) Find the magnitude of the **net force** on block 2.

 $F_{net} = m_2 a = 15(2) = 30 N$

 $\overline{\star}$ $\overline{\mathbf{A}}$

LP2. A 30 kg boy starts skating at point A with an initial speed of v_A and rises to a maximum height of 2 meters above the top of the circular ramp at point C, as shown.

a) Find the boy's speed **at the bottom of the ramp (point B).**

$$
\frac{1}{2}mv_B^2 = mgy_c
$$
\n
$$
v = 0
$$
\n
$$
v = 0
$$
\n
$$
2\,m
$$
\n
$$
v_A
$$
\n
$$
R = 3\,m
$$

b) Find the force exerted by the ramp on the boy **at the bottom of the ramp (point B).**

$$
n_B - mg = m\frac{v^2}{R}
$$

$$
n_B = m\left(g + \frac{v^2}{R}\right) = 30\left(10 + \frac{10^2}{3}\right) = 1300 \text{ N}
$$

c) Find the work done on the boy **by gravity** as he moves **from point A to point C.**

$$
W_{mg} = -mgh = -30(10)(2) = -600 J
$$

Part III: Questions (Choose the correct answer, one point each)

Q1. A box of mass *m* rests on **a rough horizontal surface** is being pushed by a horizontal force, as shown. The magnitude of the pushing force (\vec{F}) is increasing **while the box remains at rest**, which of following statements is true about the magnitude of the friction force:

- * the friction force is constant.
- $(*)$ the friction force is increasing.
- * the friction force is decreasing.
- * Impossible to tell without the values of m , μ_k , and F.

Q2. When a box of mass m is released from rest from a height h, its kinetic energy just before touching the ground is K. If a second box of mass $2m$ is released from rest from the same height h , then its kinetic energy just before touching the ground is:

 $* K$ $(*)_{2K}$ $*$ 4K * 8

Q3. Accelerating a block from $0 \frac{m}{s}$ to 5 $\frac{m}{s}$ requires a work of magnitude W_0 . Accelerating the same block from $5 m/s$ to $15 m/s$ requires the following work:

 $*$ 2 W_o $*$ 3 W_0 $*$ 4 W_0 \bigcirc_{8W}

Q4. A ball of mass *m* attached to a light string of length *L* rotates in a vertical circle, as shown. During one **complete revolution**, which of the followings is true regarding **the work done on the ball by force of** gravity (W_q) :

* $W_q > 0$ $\bigodot W_a = 0$ * $W_a < 0$

 $*$ Impossible to tell without the values of m and L

