بامعة الكويت KUWAIT UNIVERSITY	Physics Department
Physics Summer Seme	101 ester
First Midterm aturday, June 29 10:30 AM – 12	Exam 9, 2024 2:00
	Serial Number:
Jassar, Al Qattan,	Salameh
only	
	A الکویت الکویت KUWAIT UNIVERSITY Chysics Summer Seme First Midterm aturday, June 2 10:30 AM – 12 Jassar, Al Qattan,

For Instructors use only

Grades:

#	SP1	SP2	SP3	SP4	SP5	LP1	LP2	Q1	20	Q3	Q4	Total
	2	2	2	2	2	3	3	1 <		1	1	20
Pts								4	\searrow			
								<u>A</u>	7			

Important:

- Answer all questions and problems (N_0) ion = no points). 1.
- Full mark = 20 points as arranged in f by the table. **Give your final answer in the concentration** Assume $g = 10 \text{ m/s}^2$. 2.
- 3.
- 4.
- 5. Mobiles are **<u>strictly prohibited</u>** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. Cheating incidents will be processed according to the university rules.

Part I: Short Problems (2 points each)

SP1. If $\vec{A} = 2\hat{\imath} - 4\hat{\jmath} + \hat{k}$, $\vec{B} = \hat{\imath} + 3\hat{\jmath} + 2\hat{k}$. Find $|\vec{A} \times \vec{B}|$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & k \\ 2 & -4 & 1 \\ 1 & 3 & 2 \end{vmatrix} = \hat{i}(-8-3) + \hat{j}(1-4) + \hat{k}(6-4)$$
$$= -11\hat{i} - 3\hat{j} + 10\hat{k}$$
$$|\vec{A} \times \vec{B}| = \sqrt{11^2 + 3^2 + 10^2} = 15.2$$

SP2. Two displacement vectors are shown. If $B = 5 \ cm$ and $A = B_x$, find $\vec{A} - \vec{B}$ in unit vector notation.

SP3. A particle moves in the *xy*-plane. Its position vector is given by $\vec{r}(t) = (3 + t^3)\hat{i} + (4t^2 - 2t^3)\hat{j}$, where *r* is in meters and *t* is in seconds. Find the speed of the particle at t = 2s.

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = [3t^{2}\hat{i} + (8t - 6t^{2})\hat{j}] \quad m/s$$
$$\vec{v}(2s) = (12\hat{i} - 8\hat{j}) \ m/s$$
$$|\vec{v}(2s)| = \sqrt{(12)^{2} + (8)^{2}} = 14.4 \ m/s$$

SP4. A stone is thrown vertically upward from the top of a building, as shown. The stone takes 6.9 seconds to reach the ground with final speed of 49 m/s. Find the height of the building (*h*).

$$v_{y_f} = v_{y_i} - gt$$

-49 = $v_{y_i} - 10(6.9) \Longrightarrow v_{y_i} = 20 \text{ m/s}$
$$\Delta y = v_{y_i}t - \frac{1}{2}gt^2$$

-h = 20(6.9) - 5(6.9)² = -100 m
h = 100 m

SP5. Starting from point A, you run a distance of 200 m east (along the +x-direction) at an average speed of 5 m/s, and then you run a distance of 280 m west (along the -x-direction) at an average speed of 4 m/s to a reach point B. Calculate your average speed between point A and point B.

$$t_{1} = \frac{d_{1}}{v_{1}} = \frac{200}{5} = 40s$$

$$t_{2} = \frac{d_{2}}{v_{2}} = \frac{280}{4} = 70s$$

$$d_{total} = d_{1} + d_{2} = 480 m$$

$$v = \frac{d_{total}}{t_{total}} = \frac{480}{110} = 4.4 m/s$$

Part II: Long Problems (3 points each)

LP1. An object is moving along the *x*-axis. Its velocity changes with time as shown in the graph.

a) Find the velocity of the object at t = 6 s.

$$v_x(t=6s)=0\ m/s$$

b) Find the acceleration of the object at t = 10 s.

$$a_x(t=10s) = 0 m/s^2$$

c) Find the **average** <u>velocity</u> of the object in the interval from t = 4 s to t = 8 s.

$$v_{av-x} = \frac{\Delta x}{t} = \frac{\frac{1}{2}(2)(6) - \frac{1}{2}(2)(6)}{4} = 0 m/s$$

d) Find the **average** <u>speed</u> of the object in the interval from t = 4 s to t = 8 s.

$$v_{av} = \frac{d}{t} = \frac{\frac{1}{2}(2)(6) + \frac{1}{2}(2)(6)}{4} = 3 m/s$$

LP2. A stone is thrown from the edge of a cliff (point A) with a speed of 15 m/s, at an angle of 53.1° above the horizontal, as shown. The stone strikes the ground at point B. Find

a) the time of flight from point A to point B.

$$v_{xi} = 15\cos(53.1^{\circ}) = 9 m/s$$
 $v_{yi} = 15\sin(53.1^{\circ}) = 12 m/s$

$$\Delta x = v_{xi}t \implies t = \frac{\Delta x}{v_{xi}} = \frac{18}{9} = 2 s$$

$$v_{y_f}^2 = v_{y_i}^2 - 2g\Delta y$$

 $0 = 12^2 - 20h_{max} \implies h_{max} = \frac{12^2}{20} = 7.2 m$

c) the velocity of the stone just before it hits the ground in unit vector notation.

$$v_{x_f} = v_{x_i} = 9 m/s$$

$$v_{y_f} = v_{y_i} - gt = 12 - (10)(2) = -8 m/s$$

$$\vec{v}_f = (9\hat{\imath} - 8\hat{\jmath}) m/s$$

Part III: Questions (Choose the correct answer, one point each)

Q1. The figure describes the position of an object moving along <u>*x*-axis</u> as a function of time. Which of the following is correct at t = 4 s?

Q2. If \vec{A} and \vec{B} are nonzero vectors and $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}|$, then which of the following is always true.

 $\widehat{|\vec{A} \times \vec{B}|} = 0$ * \vec{A} is perpendicular to \vec{B} * $|\vec{A} \times \vec{B}| = \vec{A} \cdot \vec{B}$ * $|\vec{A} \times \vec{B}| = 1$

Q3. An object is moving along the negative x-axis and speeding up. Then,

* Its velocity and acceleration are positive.	*	Its velocity is negative, and its acceleration is positive.
(*) Its velocity and acceleration are negative.	*	Its velocity is positive, and its acceleration is negative.

Q4. A stone is projected from the ground with initial velocity $\vec{v} = (6\hat{i} + 7\hat{j}) m/s$. Neglecting air resistance, the speed and acceleration of the stone at the maximum height, respectively are:

* $(6 m/s, +10 m/s^2)$

(
$$6 m/s, -10 m/s^2$$
)

*
$$(zero, -10 m/s^2)$$

* $(zero, +10 m/s^2)$