Kuwait University

General Physics II

Physics Department

PHY 102

Final Examination Summer Semester 2023 – 2024

July 29, 2024 Time: 5:00 – 7:00 PM

Instructors: Drs. Alaa Alfailakawi, Peter Lajko, and Elias Vagenas

Fundamental constants

$k = \frac{1}{4\pi\epsilon} = 9.0 \times 10^9 \text{ N.m}^2 / \text{C}^2$	(Coulomb constant)					
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)					
$\mu_0=4\pi\times 10^{\text{-7}} \text{ T} \text{ .m/A}$	(Permeability of free space)					
$ e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)					
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)					
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)					
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)					
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)					
$\begin{array}{l} \underline{\text{Prefixes of units}} \\ m = 10^{-3} & \mu = 10^{-6} \\ k = 10^{3} & M = 10^{6} \end{array}$						

For use by Instructors only

Problems	1	2	3	4	5	6	7	8	9	10	Questions	Total
Marks												

Instructions to the Students:

1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.

2. Programmable calculators, which can mc

3. store equations, are not allowed.

4. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

1. Three point charges, $q_1 = q_2 = q_3 = 2 \mu C$, are placed on the vertices of a square, as shown. Calculate the *x* and *y* components of the net electric force, \vec{F}_1 , acting on q_1 . [5 points]

$$\begin{aligned} r_{13} &= \sqrt{(0.4 \text{ m})^2 + (0.4 \text{ m})^2} = 0.5657 \text{ m} \\ F_{31,x} &= -k \frac{|q_3q_1|}{r_{13}^2} \cos(45^o) = -0.08 \text{ N}; \\ F_{31,y} &= -k \frac{|q_3q_1|}{r_{13}^2} \sin(45^o) = -0.08 \text{ N}; \\ F_{21,x} &= -k \frac{|q_1q_2|}{r_{21}^2} = -0.225 \text{ N}; \\ F_{21,x} &= F_{21,x} + F_{31,x} = -0.305 \text{ N} \\ F_{1,y} &= F_{21,y} + F_{31,y} = -0.08 \text{ N} \end{aligned}$$

Two equal point charges q₁ = q₂ = 2 μC are placed on the x-axis and a very long uniformly charged line, with uniform linear charge density, λ, is placed perpendicular to the *x*-axis, as shown. If the net force acting on the point charge q₂ is zero, find the value of λ. [4 points]

$$\vec{E}_{\lambda} = \frac{\lambda}{2\pi\varepsilon_0 0.4 \text{ m}} \hat{\iota}$$
$$\vec{E}_{q_1} = \frac{kq_1}{(0.2 \text{ m})^2} \hat{\iota}$$

$$\vec{F}_{net} = q_2 (\vec{E}_1 + \vec{E}_2) = 0 \Rightarrow$$

 $\lambda = -\frac{q_2 0.4m}{2(0.2 m)^2} = -10.0 \ \mu\text{C/m}$

3. A spherical shell of inner radius a = 10 cm and outer radius b = 20 cm has uniform volume charge density $\rho = -300$ nC/m³. Determine the magnitude and direction of the net electric field at distance of 15 cm from the center.

[3 points]

Gauss's Law:

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0} \Rightarrow E(4\pi r^2) = \frac{Q_{enc}}{\varepsilon_0}$$

$$Q_{encl} = \rho \left(\frac{4}{3}\pi (r^3 - a^3)\right)$$

$$E = \frac{Q_{enc}}{4\pi r^2 \varepsilon_0} = -1193 \text{ N/C}, \text{ inward}$$

4. A very large sheet with uniform surface charge density, $\sigma = 70.8 \,\mu\text{C/m}^2$, is placed perpendicular to the *y*-axis, as shown. If a point charge, $q = 4 \,\mu\text{C}$, is moved from point *P* to *O*, calculate the work done by the electric field. [3 points]

5. A capacitor, $C_1 = 20 \ \mu\text{F}$, is charged by the battery, $\mathcal{E} = 60 \text{ V}$, while the switch *S* is position 1, as shown. Then the switch is moved to position 2 so that capacitor C_1 is connected to the uncharged capacitor $C_2 = 40 \ \mu\text{F}$. Calculate the final energy stored in capacitor C_2 .

[3 points]

$$V^{fin} = \frac{Q_0}{C_{eq}} = \frac{C_1}{C_1 + C_2} \varepsilon \Rightarrow V^{fin} = \frac{\varepsilon}{3} = 20 \text{ V}$$
$$U_2^{fin} = \frac{C_2 (V^{fin})^2}{2} = 8 \text{ mJ}$$

$$P = \frac{V^2}{R} \Rightarrow R = \frac{V^2}{P} = 25 \ \Omega$$
$$R = \rho \frac{L}{A} \Rightarrow L = \frac{R\pi r^2}{\rho} = 183 \ \mathrm{m}$$
$$E = \frac{V}{L} = 0.33 \ \mathrm{N/C}$$

 C_1

З

+

7. Five identical resistors, $R_1 = R_2 = R_3 = R_4 = R_5 = 6 \Omega$, are connected into circuit, as shown. Find the current on resistor R_4 . [4 points]

$$I_{\mathcal{E}} = \frac{\mathcal{E}}{R_{eq}} = 3 \text{ A}$$

$$R_4 I_{R_4} = R_{234} I_{R_{234}} \Rightarrow I_{R_4} = 1 \text{ A}$$

8. In the circuit below, the capacitor is initially uncharged and the switch is closed at time t = 0 s. Calculate the time t_1 at which the charge of the capacitor is 1/4 of its final value. [5 points]

9. A point charge q = 0.6 mC moves momentarily with velocity $\vec{v} = (8000 \text{ m}/\text{s}) \hat{j}$ in a region of uniform magnetic field $\vec{B} = (3 \text{ T}) \hat{i} + (4 \text{ T}) \hat{k}$. Calculate the magnitude of magnetic force \vec{F} acting on the point charge. [4 points]

 $\vec{F} = q \, \vec{v} \times \vec{B} = 0.6 \,\mathrm{mC} \cdot (8000 \,\frac{\mathrm{m}}{\mathrm{s}}) \hat{j} \times ((3 \,\mathrm{T}) \,\hat{\imath} + (4 \,\mathrm{T}) \,\hat{k})$ $\vec{F} = (19.2 \text{ N})\hat{\iota} - (14.4 \text{ N})\hat{k}$ $F = 24.0 \, \text{N}$

10. A proton moves into a region of uniform magnetic field with a velocity $\vec{v} = (1500 \frac{m}{s})\hat{i}$ and leaves it with a velocity $\vec{v} = (1500 \frac{m}{s})\hat{j}$. If the proton travels a distance s = 0.25 m in the magnetic field, find the magnitude of the magnetic field. [3 points]

The path of the proton is a quarter circle.

 $\begin{array}{c} \times \times \times \\ \times \times \times \\ \times \times \times \\ \overrightarrow{B} \end{array} \xrightarrow{\gamma}_{7}$ • *p*+ *x* $s = \frac{2\pi R}{4} \Rightarrow R = \frac{4s}{2\pi} = 0.159 \text{ m}$ $R = \frac{mv}{aB} \Longrightarrow B = \frac{mv}{aR} = 9.84 \times 10^{-5} \text{ T}$

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

1. Two point charges q_1 and q_2 are fixed on the y-axis as shown. If the net electric field \vec{E}_{net} at point *P* is along the y-axis, which statement can be correct for the charges?

- 2. A conducting spherical shell has a net charge Q and a point charge q is fixed off-center of its cavity, as shown. Which statement is correct? The surface charge density is
 - a) uniform on the inner surface and non-uniform on the outer surface.
 - b) uniform on the inner surface and uniform on the outer surface.
 - c) non-uniform on the inner surface and uniform on the outer surface.
 - d) non-uniform on the inner surface and non-uniform on the outer surface.
- 3. Systems *A* and *B* are both made of 3 point charges, as shown. Which statement is true for the total potential energies of these systems, U_A , and U_B , respectively?

- 4. If two identical capacitors are connected in series, their equivalent capacitance is C_{ser} . If the same capacitors are connected in parallel, their equivalent capacitance is C_{par} . The ratio of C_{ser}/C_{par} is
 - a) 1/2.
 - b) 1/4.

- c) 1.
- d) 2.
- 5. A cylindrical rod has resistance R. If the length and the diameter of the rod are both doubled, the rod has a resistance
 - a) *R*/2.
 - b) *R*/4.
 - c) 2*R*.
 - d) 4*R*.
- 6. In the circuit shown, $R_1 = R_2 = R_3$. If the switch, *S*, is opened, the current supplied by the emf device
 - a) decreases.
 - b) increases.
 - c) remains the same.
 - d) drops to zero.

- 7. The magnetic force acting a charged particle can never do work because the force is
 - a) parallel with the velocity of the particle.
 - b) perpendicular to the velocity of the particle.
 - c) parallel with the magnetic field.
 - d) opposite to the magnetic field.
- 8. Three straight wires *A*, *B*, and *C*, with identical lengths carrying identical currents *I*, are placed into a uniform magnetic field, as shown. The magnitude of magnetic force is
 - a) smallest for wire A.
 - b) largest for wire *B*.
 - c) largest for wire C.
 - d) smallest for wire *C*.

