Kuwait University

General Physics II

Physics Department

PHY 102

Final Examination Summer Semester 2022 – 2023

July 24, 2023 Time: 5:00 – 7:00 PM

Name:	Student No:
Section No:	Serial No:

Instructors: Drs. Alaa Alfailakawi, Afshin Hadipour, & Peter Lajko

<u>Fundamental constants</u>									
$k = \frac{1}{4\pi\epsilon} = 9.0 \times 10^9 \text{ N.m}^2 / \text{C}^2$	(Coulomb constant)								
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)								
$\mu_0=4\pi\times 10^{\text{-7}}~T~.m/A$	(Permeability of free space)								
$ e = 1.60 \times 10^{-19} \text{ C}$	(Elementary unit of charge)								
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)								
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)								
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)								
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)								
$\begin{array}{l} \underline{\text{Prefixes of units}} \\ m = 10^{-3} & \mu = 10^{-6} \\ k = 10^{3} & M = 10^{6} \end{array}$									

For use by Instructors only

Problems	1	2	3	4	5	6	7	8	9	10	Questions	Total
Marks												

Instructions to the Students:

1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.

- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

1. Three point charges, $q_1 = q_2 = -8 \,\mu\text{C}$, and $q_3 = 8 \,\mu\text{C}$, are placed on the *xy*-plane, as shown. Calculate the *x* and *y* components of the net electric force, \vec{F}_3 , acting on q_3 . [4 points]

2. Two uniformly charged rings of identical radii a and of charges $Q_1 = -4$ nC and $Q_2 = 4$ nC are placed along the x-axis as shown. If a = 0.4 m, calculate the net electric field vector at point P. [3 points]

3. A spherical shell of inner radius a = 5 cm and outer radius b = 10 cm has uniform volume charge density $\rho = -90 \text{ nC/m}^3$. A point charge q is placed to the center of the shell. At a radial distance r = 20 cm from the center, the net electric field points away from the center and has a magnitude of E = 240 N/C. Determine the value of q. [3 points]

Gauss's Law:

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_0}$$

$$E(4\pi r^2) = \frac{Q_{encl}}{\varepsilon_0}$$

$$Q_{encl} = q + \rho \left(\frac{4}{3}\pi (b^3 - a^3)\right)$$

$$q = E(4\pi r^2)\varepsilon_0 - \rho\left(\frac{4}{3}\pi(b^3 - a^3)\right) \Rightarrow q = 1.4 \text{ nC}$$

4. Two conducting spheres of radii $R_1 = 8$ cm and $R_2 = 4$ cm are placed far from each other. Initially, the *sphere* 1 has charge $Q_0 = 60 \ \mu$ C and *sphere* 2 is uncharged. Then the spheres are connected to each other with a long, thin wire. Calculate the final charge of the sphere of radius R_2 . [4 points]

5. Calculate the equivalent capacitance between points *a* and *b* of the following network of six identical capacitors, $C_1 = C_2 = C_3 = C_4 = C_5 = C_6 = 4 \,\mu\text{F}.$ [3 points]

6. A cylindrical conducting wire of length L = 5.0 m and radius r = 0.1 mm has resistance $R = 4 \Omega$. The wire has a concentration of free electrons $n = 1.5 \times 10^{28}$ m⁻³. If the magnitude of electric field in the wire is E = 0.05 N/C, calculate the drift speed v_d of the electrons. [4 points]

$$R = \rho \frac{L}{A} = \rho \frac{L}{\pi r^2} \Rightarrow \rho = \frac{R\pi r^2}{L}$$

$$\rho = 2.5 \times 10^{-8} \Omega m$$

$$E = \rho J \Rightarrow J = \frac{E}{\rho} = 2 \times 10^6 \text{ A/m}^2$$

$$J = nev_d \Rightarrow v_d = \frac{J}{ne} = 8.3 \times 10^{-4} \text{ m/s}$$

7. Six identical resistors, $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 3 \Omega$, are connected into circuit as shown. Find the power supplied by the ideal *emf* device. [4 points]

8. A proton moves into a region of uniform magnetic field with a velocity of $\vec{v} = (1500 \frac{\text{m}}{\text{s}})\hat{i}$ and leaves it by moving to opposite direction, as shown. The magnetic field is perpendicular to the *xy*-plane. If the proton travels a distance s = 0.8 m in the magnetic field, find the magnitude and direction of the uniform magnetic field. [3 points]

 $s = \pi R$, since the proton completes a semicircle.

 $R = \frac{s}{\pi} = \frac{mv}{|q|B} \Rightarrow B = \frac{mv}{|q|R} = 61.5 \,\mu\text{T}$ \vec{B} is outward (or $\vec{B} = B_z \hat{k}$).

9. A three-segment wire of total length 3*a* carries a current I = 3 A, as shown in the figure. The wire is in uniform magnetic field, $\vec{B} = (2 \text{ T})\hat{k}$. If a = 0.4 m, calculate the net magnetic force acting on the wire.

10. Three very long, parallel wires are perpendicular to the *xy*-plane. Each wire carries a current of magnitude I = 4 A in the direction as shown. Calculate the force per unit length vector $\frac{\vec{F}_3}{L}$ acting on the wire of I_3 . [5 points]

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

- 1. Two very long uniformly charged lines with linear charge densities $\lambda_1 = 9 \text{ nC/m}$ and $\lambda_2 = -6 \text{ nC/m}$ are placed perpendicular to the x-axis, as shown. Along the x-axis, the net electric field vector, \vec{E}_{net} , is zero
 - a) somewhere to the left of λ_1 .
 - b) somewhere to the right of λ_2 .
 - c) somewhere between the two linear charge densities.
 - d) everywhere.
- 2. Two very large parallel charged conducting plates *A* and *B* have identical charges *Q* and *Q*. Which statement is correct for the location of the charges? The charges are
 - a) on the right surface of plate A and on the right surface of plate B.
 - b) on the right surface of plate A and on the left surface of plate B.
 - c) on the left surface of plate A and on the right surface of plate B.
 - d) on the left surface of plate *A* and on the left surface of plate *B*.
- 3. A point charge q > 0 is fixed at the origin as shown. Which relation is correct for the electric potential differences?

- 4. Three capacitors are connected into a circuit as shown. If $C_1 = C$, $C_2 = 2C$, $C_3 = 3C$, which relation is correct for the charges stored on the capacitors?
 - a) $Q_1 = Q_2$. b) $Q_1 = Q_3$. c) $Q_1 = Q_2/2$. d) $Q_1 = Q_3/2$.

Α

B

- 5. A cylindrical wire has length *L*, radius *r* and resistivity ρ . Another cylindrical wire made of the same material has length 2*L*, radius 2*r*, so, its resistivity is
 - a) *ρ*.
 - b) 2*ρ*.
 - c) 4*ρ*.
 - d) ρ/2.

6. In the circuit shown, $R_1 = R_2 = R_3$. If the switch is closed, the potential change on R_1

- a) will decrease.
- b) will increase. 🗲
- c) will remain the
- d) will drop to zero.

7. An electron moves in a region of uniform magnetic field, $\vec{B} = B_x \hat{i}$. The velocity of the electron is momentarily parallel with the positive *y*-axis, as shown. At this moment, the magnetic force \vec{F}_B acting on the electron is along the

8. A current *I* flows in a very long straight wire along the negative *y*-axis, as shown. Due to this current, the magnetic field \vec{B} points parallel with the negative *z*-axis

- b) at point *B*.
- c) at both points A and B.
- d) at none of the points A and B.

