

Kuwait University **Physics Department**

Physics 121

Final Exam Summer Semester (2022-2023) Summer Semester (2022-2023)

Time: 11:00 - 13:00

Int's Name:

nt's Name:

nt's Number:

nt's Number:

nt's Number:

nt's Number:

nt's Number:

answer all Costum and problems (No solution = no points).

2. Full mark:

2.

July 24, 2023 Time: 11:00 – 13:00

Student's Name: ……………………………………………. Serial Number: ….…………

Student's Number: …………………………………………….. Section: ……………………

Instructors: Drs. Abdulmuhsen, Alotaibi, Lajko, Kokkalis, Razee

Important:

- 1. Answer all questions and problems (No solution = no points).
- 2. Full mark = 88 points as arranged in the table below.
- 3. **Give your final answer in the correct units.**
- 4. Assume $g = 9.8 \text{ m/s}^2$.
- 5. Mobiles are **strictly prohibited** during the exam.
- 6. Programmable calculators, which can store equations, are not allowed.
- 7. **Cheating incidents will be processed according to the university rules.**

For use by instructors

Grades:

P1. A rock is thrown vertically upward from the roof of a 36.0 m tall building (point *A*), with an initial speed $v_0 = 12.0$ m/s. The rock reaches its maximum height (point B) and finally lands on the ground (point C). **Ignore air resistance**.

a. Find the speed of the rock just before it hits the ground (point C). (2 points) b. Find the time it took the rock to move from point B to point C. (1 point)

 $\vec{D} = \vec{A} + \vec{B} + \vec{C}$

(a)

- **a.** Find the magnitude of vector \vec{D} .
- **b.** Find the direction of \overline{D} , with respect to the positive *x-axis***.** (1 point) $\vec{C} + \vec{C}$:

magnitude of vector \vec{D} .

direction of \vec{D} with respect to to
 $B_x + C_x = 6$

$$
D = \sqrt{D_x^2 + D_y^2} = 6.7
$$

(b) $\theta = \tan^{-1} \left(\frac{D_y}{D_x}\right) = 26.6^\circ$

 $D_x = A_x + B_x + C_x = 6$

 $D_v = A_v + B_v + C_v = 3$

P3. The box A ($M_A = 6$ kg) on an incline ($\theta = 30^\circ$) is connected to the box B by a massless rope over a massless and frictionless pulley as shown. When released the box A moves down the incline with acceleration $a = 0.5 \text{ m/s}^2$. The coefficient of kinetic friction between the box A and the surface is $\mu_k = 0.15$.

- **a. Find the tension on the rope. (3 points)**
- **b. Find the mass of box B. (2 points)**

(a)

For box A y-axis: $F_N = M_A g cos\theta$ For box A x-axis: $-F_T - \mu_k M_A g \cos\theta + M_A g \sin\theta = M_A a$ $\rightarrow F_T = -M_A a - \mu_k M_A g cos\theta + M_A g sin\theta = 18.8 N$ **(b)** <u>For box B y-axis:</u> $F_T - M_B g = M_B a$

$$
M_B = \frac{F_T}{g+a} = 1.8 \ kg
$$

P4. The figure shows a roller coaster car with mass $m = 100$ kg, leaving point A from rest and arriving at point B with 10 m/s. Point \overline{B} is at the top of a semi-circular loop of radius $R = 20$ m.

a. Find the work done by the force of friction during the motion from A to B. (2 points) b. Find the apparent weight of the roller coaster at point B. (2 points)

 $(m)(C)$ ---------

P5. A vertical spring with stiffness constant 875 N/m is attached to ground as shown. At the free and of the spring a 0.38 kg ball is placed. The spring is compressed down by $y = 0.16$ m and **released from rest**. **Ignore any resistance force.**

- **a.** Find the speed of the ball (v) when **it is just released from the spring at the equilibrium position. (2 points)**
- **b.** Find the maximum height (h_{max}) **the ball can reach above the equilibrium position. (2 points)**

$$
\begin{array}{c}\n\text{(A)} \oplus \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(B)} \oplus \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(C)} \oplus \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(D)} \oplus \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(E)} \oplus \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(E)} \oplus \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{(E)} \oplus \\
\hline\n\end{array}
$$

(a) $E_A = E_B$

$$
\frac{1}{2}mv_A^2 + mg(-y) + \frac{1}{2}ky^2 = \frac{1}{2}mv_B^2 \rightarrow v_B = \sqrt{\frac{ky^2 + 2mg}{m}} = 7.47 \, m/s
$$
\n**(b)** $E_A = E_C$ \n
$$
\frac{1}{2}mv_A^2 + mg(-y) + \frac{1}{2}ky^2 = 0 + mgh_m = 2.85 \, m
$$

P6. The structure shown below is made up of three uniform rectangular pieces. The three pieces have mass $M_1 = 2.0$ kg, $M_2 = 1.5$ kg, and $M_3 = 3.0$ kg. **Find the** *x***-coordinate and** *y***-coordinate of the center-of-mass of the entire structure, measured from the origin (point O). (4 points)** Ground
 F_B
 $+ mg(-y) + \frac{1}{2}ky^2 = \frac{1}{2}mv_B^2 \rightarrow v_B = \sqrt{\frac{ky^2 + 2m\pi}{m}} = 7.47 m/s$

For $+ mg(-y) + \frac{1}{2}ky^2 = 0 + mgh_m$

acture shown below
 $\frac{1}{2}k y^2 = 0 + mgh_m$
 $\frac{1}{2}k y^2 = 0 + mgh_m$
 $\frac{1}{2}k y^2 = 0 + mgh_m$
 $\frac{1}{2}k y^2 = 0$
 $\frac{1}{2}k y$

P7. A point P on the rim of a rotating wheel of radius $R = 48$ cm slows down uniformly from linear speed $v_o = 8$ m/s, and the wheel makes 40 revolutions **until stopping**.

P8. A 2.0 m long beam of mass $M = 80.0$ kg is held horizontal by a hinge at a vertical pole and a massless cable attaching to it as shown. The structure is in static equilibrium.

a. Find the tension in the cable. (2 points)

b. Find the horizontal component of the force exerted by the

hinge on the beam. (1 point)

The second condition of equilibrium (0) about hinge:

$$
(t_{net} - \theta) \text{ about image.}
$$

-
$$
Mg \times \left(\frac{2}{2}\right) + F_T \times 1.5 \times \sin 40^\circ = 0
$$

$$
\rightarrow F_T = \frac{Mg(1)}{1.5\sin (40^\circ)} = 813 \text{ N}
$$

The first condition of equilibrium ($F_{net} = 0$): $F_{Hx} - F_T \cos 40^\circ = 0 \rightarrow F_{Hx} = 623 \text{ N}$

 1.5 m

P9. A uniform board of length $L = 4.6$ m and mass $m = 52$ kg, is supported at two points A and B, as shown in the figure. A diver of mass $M = 68$ kg stands at the end of the board. The entire structure is in balance.

a. Find the magnitude of the force \mathbf{z}_A acting on the board from the support. (2 points)

b. Find the magnitude of the force F_B acting on the board from the support. (2 points)

The second condition of equilibrium about point B $\tau_{net}^B = 0 \rightarrow F_A \times 1.2$ $-52 \times 9.8 \times (2.3 - 1.2)$ $-68 \times 9.8 \times 3.4 = 0$ \rightarrow F_A = 2355 N

 $\tau_{net}^A = 0 \rightarrow F_B \times 1.2 - 52 \times 9.8 \times 2.3$ $-68 \times 9.8 \times 4.6 = 0$ \rightarrow F_R = 3531 N

Or from the first condition of

equilibrium ($F_{Net} = 0$)

$$
F_B = F_A + mg + Mg = 3531 N
$$

P10. Water and oil are poured into a U-shaped tube open at both ends. They come to equilibrium as shown, where $h_1 = 10$ cm and $h_2 = 4$ cm. Take the density of water to be $\rho_w = 10^3 \text{ kg/m}^3$ and the density of oil ρ_o .

a. Find the gauge pressure at point A inside the water. (2 points) b. Find the density of oil ρ_o **.** (1 **point**)

$$
P = \rho_w gh = \rho_w g (h_1 - h_2) = 588 Pa
$$
\n
$$
P = \rho_o gh_1 \rightarrow \rho_o = 600 kg/m^3
$$
\nWater

\n