Kuwait University

General Physics II

1

Physics Department

PHY 102

Second Midterm Examination Spring Semester 2023 – 2024

May 4, 2024 Time: 12:00 – 1:30 PM

Name:	Student No:
Section No:	Serial No:

Instructors: Drs. Alfailakawi, Lajko, Sharma, Vagenas

Fundamental constants

$k = \frac{1}{4\pi\epsilon_{\perp}} = 9.0 \times 10^9 \text{ N}.\text{m}^2/\text{C}^2$	(Coulomb constant)
$\varepsilon_o = 8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{(N} \cdot \mathrm{m}^2)$	(Permittivity of free space)
$\mu_0=4\pi\times 10^{\text{-7}} \text{ T.m/A}$	(Permeability of free space)
$ e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)
<u>Prefixes of units</u> $m = 10^{-3}$ $\mu = 10^{-6}$	$n = 10^{-9}$ $p = 10^{-12}$

For use by Instructors only

 $k = 10^3$

Problems	1	2	3	4	5	6	7	8	Questions	Total
Marks										

 $G = 10^9$

 $T = 10^{12}$

Instructions to the Students:

- 1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.

 $M = 10^{6}$

3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

 Three point charges q₁ = 4 nC, q₂ = 5 nC, and q₃ = 4 nC are placed on the x and y-axis as shown. Compute the work done by the external agent to move the electric charge q = 3 nC from infinity (V_∞ = 0 V) to point A, without changing its kinetic energy. [4 points]

y

2. An infinite uniformly charged plane with surface charge density $\sigma = 35.4 \text{ nC/m}^2$ is placed perpendicular to the x-axis as shown. Compute the potential difference $V_A - V_B$. [4 points]

17

$$V_{A} - V_{B} = \int_{A}^{B} \vec{E} \cdot d\vec{l} \qquad [1]$$

$$\vec{E} = \frac{\sigma}{2\varepsilon_{0}}\hat{i} \qquad d\vec{l} = dx\hat{i} + dy\hat{j} \qquad [1]$$

$$V_{A} - V_{B} = \int_{A}^{B} \left[\frac{\sigma}{2\varepsilon_{0}}\hat{i}\right] \cdot (dx\hat{i} + dy\hat{j}) = \frac{\sigma}{2\varepsilon_{0}}\int_{2cm}^{5cm} dx \qquad [1]$$

$$V_{A} - V_{B} = \frac{\sigma}{2\varepsilon_{0}}(0.05 - 0.02) \Longrightarrow V_{A} - V_{B} = 60 \text{ V} \qquad [1]$$

3. In the given network of capacitors with $C_1 = C_2 = C_3 = 10 \,\mu\text{F}$, and $C_4 = C_5 = 5 \,\mu\text{F}$, the capacitor C_2 has charge $Q_2 = 15 \,\mu\text{C}$. Find the stored energy in capacitor C_5 . [4 points]

 C_1 and C_2 are in series:

$$C_{12} = \frac{c_1 c_2}{c_1 + c_2} = 5 \,\mu\text{F}$$
^[1]

so, the total charge of C_{12} is $Q_{12} = Q_1 = Q_2$. [1]

$$C_{12} = \frac{Q_{12}}{V} \Longrightarrow V = \frac{Q_{12}}{C_{12}} \Longrightarrow V = 3 \text{ V}$$
[1]

$$U_{C_5} = \frac{1}{2}C_5 V^2 \Longrightarrow U_{C_5} = 22.5 \,\mu\text{J}$$
 [1]

4. An air-filled parallel-plate capacitor with a plate area A and separation d = 5 cm, has capacitance $C_0 = 40 \ \mu\text{F}$. Then, the capacitor is partially filled with a dielectric with constant K = 3 as shown. Find the equivalent capacitance. [4 points]

$$C_0 = \varepsilon_0 \frac{A}{d} \Longrightarrow \varepsilon_0 A = C_0 d$$
^[1]

$$C_1 = K \varepsilon_0 \frac{A}{x} \Longrightarrow C_1 = K \frac{C_0 d}{0.03} \Longrightarrow C_1 = 200 \,\mu\text{F}$$
 [1]

$$C_2 = \varepsilon_0 \frac{A}{d-x} \Longrightarrow C_2 = \frac{C_0 d}{0.05 - 0.03} \Longrightarrow C_2 = 100 \,\mu\text{F} \qquad [1]$$

$$C_1$$
 and C_2 are in series:

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2} \Longrightarrow C_{eq} = 66.7 \,\mu\text{F}$$
[1]

5. In a metallic wire, the electric current is I(t) = 12t + 3 (t is in seconds and I is in amperes). Find the number of electrons that flow through a cross-sectional area of the metallic wire between the time $t_1 = 1$ ns and $t_2 = 3$ ns. [4 points]

$$I = \frac{dQ}{dt} \Longrightarrow Idt = dQ \implies Q = \int_{1 \text{ ns}}^{3 \text{ ns}} I(t)dt \qquad [1]$$

$$Q = \int_{1\,ns}^{3\,ns} (12t+3)dt \Longrightarrow Q = 12 \left[\frac{t^2}{2}\right]_{1\,ns}^{3\,ns} + 3[t]_{1\,ns}^{3\,ns}$$
[1]

$$Q = 6 \text{ nC}$$
[1]

Electric charge is quantized:

$$Q = N |e| \Longrightarrow N = \frac{Q}{|e|} \Longrightarrow N = 3.75 \times 10^{10} \text{ electrons}$$
 [1]

6. Find the electric currents in all branches of the given electric circuit. [5 points]

Junction rule:

$$l_3 = l_1 + l_2$$
 [1]
Left loop:
 $20 - 6l_1 - 5l_3 - 9l_1 = 0$
Substituting the first equation in the second one:
 $20 - 20l_1 - 5l_2 = 0 \Rightarrow 4l_1 + l_2 = 4$ [1]
Right loop:
 $15 - 10l_2 - 5l_3 = 0$
Substituting the first equation in the above:
 $15 - 15l_2 - 5l_1 = 0 \Rightarrow l_1 + 3l_2 = 3$ [1]
Multiplying the 3^{rd} equation with (-3) and adding it to the above equation, one gets:
 $-11l_1 = -9 \Rightarrow \boxed{l_1 = 0.82 \text{ A}}$ [1]
Substituting l_1 in the 2^{nd} equation, one gets:
 $4 \times 0.82 + l_2 = 4 \Rightarrow \boxed{l_2 = 0.73 \text{ A}}$ and so from the first equation: $\boxed{l_3 = 1.55 \text{ A}}$ [1]

7. Find the power dissipated between *a* and *b*.

3Ω 13Ω а VVVV 7 V 13 V VVV VVVV 3Ω 5Ω Loop rule: $13 - 13I - 3I - 7 - 3I - 5I = 0 \Rightarrow 24I = 6 \Rightarrow I = 0.25 \text{ A}$ [1] $V_a - 13I - 3I = V_b \Rightarrow V_a - V_b = 4 \text{ V} \Rightarrow V_{ab} = 4 \text{ V}$ [1] $P = V_{ab}I \Rightarrow P = 1.0 \text{ W}$ [1]

8. At t = 0 s, the switch S is closed. Find the electric charge stored in the capacitor at t = 0.02 s. [4 Points]

[3 points]

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

Which is the diagram that shows the electric potential of a charged conducting sphere of radius R as a function of distance r from the center of the conducting sphere?

- 2. An infinite conducting plane is uniformly charged. Its equipotential surfaces are:
 - a) Infinite inclined planes making an angle of 45° with the conducting plane.
 - b) infinite inclined planes making an angle of 60° with the conducting plane.
 - c) Infinite planes parallel to the conducting plane.
 - d) Infinite planes perpendicular to the conducting plane.
- 3. An air-filled parallel-plate capacitor is charged by a battery. While the battery remains connected, the separation between the plates of the capacitor is increased. Which statement is correct?
 - a) The energy density of the capacitor will remain the same.
 - b) The electric charge of the capacitor will increase.
 - c) The electric energy of the capacitor will increase.
 - d) The energy density of the capacitor will decrease.
- 4. Two parallel-plate capacitors are connected as shown. Then, a dielectric is inserted in one of the capacitors and fully fills it. The equivalent capacitance of the two capacitors will
 - a) increase.
 - b) decrease.
 - c) remain the same.
 - d) become zero.

5. Which diagram gives the terminal voltage of a real source of emf as a function of the electric

- 6. The power input to a real source of emf is:
 - a) $P_{in} = \varepsilon Ir$.
 - b) $P_{in} = \varepsilon I I^2 r$.
 - c) $P_{in} = \mathcal{E}I + I^2 r$.
 - d) $P_{in} = \varepsilon I + I^2 r^2$.
- 7. In an *RC* circuit, during the charging of the capacitor, the diagram of the magnitude of the electric field between the plates of the capacitor as a function of the time is:

- 8. In a charging RC circuit, the time constant is τ . If the switch is closed at t = 0, when the capacitor is uncharged, after how much time will the charge be the 63.2 % of its maximum value Q?
 - a) τ.
 b) 2τ.
 c) 5τ.
 d) 10τ.