Kuwait University

General Physics II

Physics Department

PHY 102

Second Midterm Examination Spring Semester 2022 – 2023

April 29, 2023 Time: 12:00 – 1:30 PM

Name:	Student No:
Section No:	Serial No:

Instructors: Drs. Alfrousheh, Alfailakawi, Hadipour, Lajko, Sharma, Vagenas

Fundamental constants							
$k = \frac{1}{4\pi\epsilon_{o}} = 9.0 \times 10^{9} \text{ N.m}^{2} / \text{C}^{2}$	(Coulomb constant)						
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)						
$\mu_0=4\pi\times 10^{\text{-7}}\text{ T}.\text{m/A}$	(Permeability of free space)						
$ e = 1.60 \times 10^{-19} \mathrm{C}$	(Elementary unit of charge)						
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)						
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)						
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)						
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)						
Prefixes of units							
$m = 10^{-3}$ $\mu = 10^{-6}$	$n = 10^{-9}$ $p = 10^{-12}$						
$k = 10^3$ $M = 10^6$	$G = 10^9$ $T = 10^{12}$						

For use by Instructors only

Problems	1	2	3	4	5	6	7	8	Questions	Total
Marks										

Instructions to the Students:

- 1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

1. An air-filled parallel plate capacitor C with a plate area 0.030 m² and a plate separation 1.0 mm is charged to a potential difference $V_0 = 20$ V. The battery is then disconnected. A dielectric slab with K = 3.2 is then inserted between the plates filling the space completely. What is the energy stored on the capacitor now? [4 points]

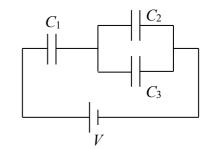
$$C_0 = \varepsilon_0 \frac{A}{d} = \frac{8.85 \times 10^{-12} \times 0.03}{1.0 \times 10^{-3}} \text{ F} = 2.66 \times 10^{-10} \text{ F}$$

$$Q_0 = C_0 V_0 = 2.66 \times 10^{-10} \text{ F} \times 20 \text{ V} = 5.31 \times 10^{-9} \text{ C}$$

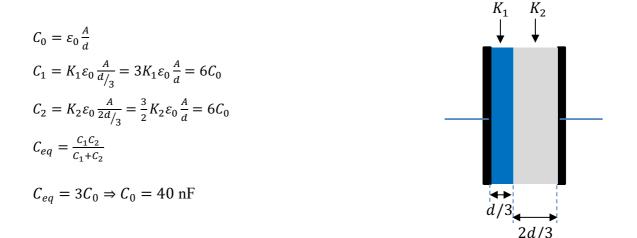
$$C = KC_0 = 8.51 \times 10^{-10} \text{ F}$$

$$U = \frac{Q_0^2}{2C} = \frac{(5.31 \times 10^{-9} \text{ C})^2}{2 \times 8.51 \times 10^{-10} \text{ F}} = 1.66 \times 10^{-8} \text{ J}$$

2. If $C_1 = 12 \ \mu\text{F}$, $C_2 = 8 \ \mu\text{F}$, $C_3 = 16 \ \mu\text{F}$ and $V = 15 \ \text{V}$, what is the charge stored on the capacitor C_3 ? [5 points]

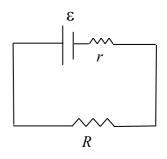

$$C_{23} = C_2 + C_3 = 8 \,\mu\text{F} + 16 \,\mu\text{F} = 24 \,\mu\text{F}$$

$$C_{eq} = \frac{C_1 \cdot C_{23}}{C_1 + C_{23}} = \frac{12 \,\mu\text{F} \times 24 \,\mu\text{F}}{(12 + 24) \,\mu\text{F}} = 8 \,\mu\text{F}$$


$$Q = C_{eq}V = 8 \,\mu\text{F} \times 15 \,\text{V} = 120 \,\mu\text{C}$$

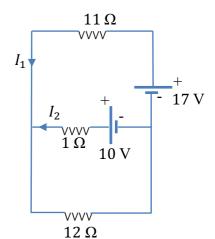
$$V_{C_2} = V_{C_3} = \frac{Q}{C_{23}} = \frac{120 \,\mu\text{C}}{24 \,\mu\text{F}} = 5 \,\text{V}$$

$$Q_{C_3} = C_3 V_{C_3} = 16 \,\mu\text{F} \times 5 \,\text{V} = 80 \,\mu\text{C}$$

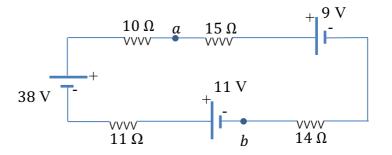

3. An air-filled parallel-plate capacitor with a surface area A and a plate separation d, has capacitance C_0 . When the capacitor is filled with two dielectric materials with dielectric constants $K_1 = 2$ and $K_2 = 4$, as shown, the capacitance is 120 nF. Calculate the initial capacitance C_0 . [5 points]

4. An electric field E = 6.0 V/m is applied across a conducting wire of radius 1.0 mm. If the resistivity of the conductor is $18.7 \times 10^{-8} \Omega$.m, how much charge passes through the wire in 10 minutes? [3 points]

 $E = \rho J \implies J = \frac{E}{\rho} = \frac{6.0 \text{ V}}{18.7 \times 10^{-8} \Omega.\text{m}} = 3.2 \times 10^{7} \text{ A/m}^{2}$ $I = J.A = 3.2 \times 10^{7} \frac{\text{A}}{\text{m}^{2}} \times \pi (0.001 \text{ m})^{2} = 100.8 \text{ A}$ $Q = I.t = 100.8 \text{ A} \times (10 \times 60 \text{ s}) = 6.05 \times 10^{4} \text{ C}$


5. A car battery with $\varepsilon = 12.0$ V shows a terminal voltage 11.3 V, when connected to a light bulb. The power dissipated in the bulb is 4.7 W. What is the internal resistance r of the battery? [3 points]

$$P = \frac{V^2}{R} \implies R = \frac{V^2}{P} = \frac{(11.3 \text{ V})^2}{4.7 \text{ W}} = 27.2 \Omega$$
$$I = \frac{V}{R} = \frac{11.3 \text{ V}}{27.2 \Omega} = 0.415 \text{ A}$$
$$\varepsilon = V + Ir \implies r = \frac{\varepsilon - V}{I} = \frac{(12.0 - 11.3) \text{ V}}{0.415 \text{ A}} = 1.69 \Omega$$


6. Find the electric currents I_1 and I_2 .

<u>Junction rule:</u> $I_3 = I_1 + I_2$ (1) <u>Loop rule (upper):</u> $17 - 11I_1 + I_2 - 10 = 0$ $7 - 11I_1 + I_2 = 0$ (2) <u>Loop rule (big):</u> $17 - 11I_1 - 12I_3 = 0$ <u>Substitute equation (1) in the above equation</u> $17 - 23I_1 - 12I_2 = 0$ (3) <u>Multiply equation (2) with (+12)</u> (2) $\Rightarrow 84 - 132I_1 + 12I_2 = 0$ (4) <u>Add equations (3) and (4)</u> $101 - 155I_1 = 0 \Rightarrow I_1 = 0.65$ A (2) $\Rightarrow I_2 = 0.17$ A

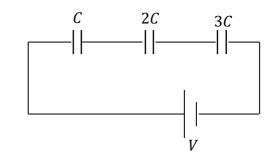
7. Find the potential difference $V_a - V_b$.

Loop rule

 $38 - 10I - 15I - 9 - 14I + 11 - 11I = 0 \Longrightarrow I = 0.8 \text{ A}$

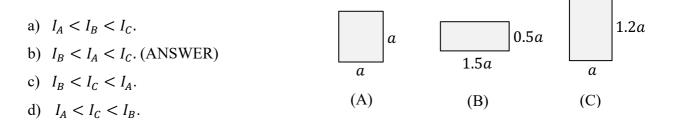
$$\begin{split} V_a + 10I - 38 + 11I - 11 &= V_b \Longrightarrow V_{ab} - 49 + 21I = 0 \\ V_{ab} &= 49 - 21I \Longrightarrow V_{ab} = 32.2 \text{ V} \end{split}$$

8. The capacitor is uncharged and at time t = 0 the switch is closed. At time t₁, the electric charge on the capacitor is q(t₁) = 4 μC and when the capacitor is fully charged the charge is Q = 40 μC. Find the power dissipated in resistance R₁ at time t₁. [4 Points]

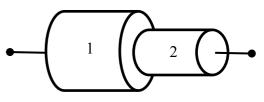

Solution 1

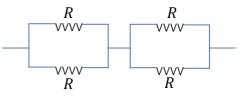
$$R_{eq} = R_1 + R_2 \Rightarrow R_{eq} = 10 \ \Omega$$

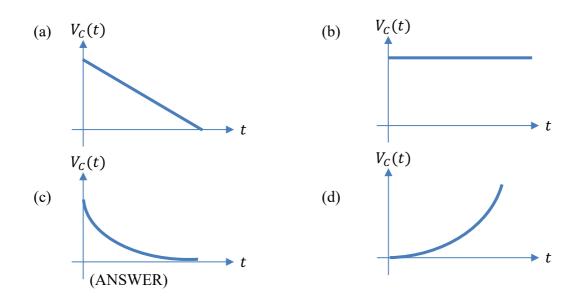
 $I_0 = \frac{\varepsilon}{R_{eq}} \Rightarrow I_0 = 2 \ A$
 $q(t_1) = Q \left[1 - e^{-\frac{t_1}{R_{eq}C}} \right] \Rightarrow \frac{q(t_1)}{Q} = 1 - e^{-\frac{t_1}{R_{eq}C}} \Rightarrow e^{-\frac{t_1}{R_{eq}C}} = 1 - \frac{q(t_1)}{Q} \Rightarrow e^{-\frac{t_1}{R_{eq}C}} = 0.9$
 $P_{R_1}(t_1) = i^2(t_1)R_1 = I_0^2 R_1 \left(e^{-\frac{t_1}{R_{eq}C}} \right)^2 \Rightarrow P_{R_1}(t_1) = 19.44 \ W$
Solution 2


$$\begin{split} R_{eq} &= R_1 + R_2 \Longrightarrow R_{eq} = 10 \ \Omega \\ C &= \frac{Q}{\varepsilon} \Longrightarrow C = 2 \ \mu \text{F} \\ \underline{\text{Loop rule: }} \mathcal{E} - i(t_1) R_{eq} - \frac{q(t_1)}{c} = 0 \Rightarrow i(t_1) = 1.8 \text{ A.} \\ P_{R_1}(t_1) &= i^2(t_1) R_1 \Longrightarrow P_{R_1}(t_1) = 19.44 \text{ W} \end{split}$$

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:


- 1. A battery V is connected to three capacitors. The electric charge is
 - a) the greatest in capacitor *C*.
 - b) the greatest in capacitor 2*C*.
 - c) the greatest in capacitor 3C.
 - d) the same in all three capacitors. (ANSWER)


- 2. An air-filled capacitor C with plate separation d is charged to a potential difference V. The battery is disconnected and then the plate separation is increased to 2d. Which statement is correct?
 - a) The energy stored on the capacitor becomes zero.
 - b) The energy stored on the capacitor becomes double. (ANSWER)
 - c) The energy stored on the capacitor becomes half.
 - d) The energy stored on the capacitor does not change.
- 3. The figure shows cross-sections of three conductors of the same material, having the same length. When a potential difference V is applied separately across the length of these, the currents in them will be in the order:


- 4. A potential difference is applied across the two ends of a conductor made of two cylinders of the same material with radii $r_1 = 2r_2$. The drift velocity in cylinder 1 is v_d . The drift velocity in cylindrical 2 will be:
 - a) v_d . b) $2v_d$. c) $4v_d$. (ANSWER) d) $v_d/4$.

- 5. In a metallic wire, electrons are moving in the -x direction. Which statement is correct?
 - a) The electric current density J has direction $-\hat{i}$ and the applied electric field \vec{E} has $-\hat{i}$.
 - b) The electric current density J has direction $-\hat{i}$ and the applied electric field \vec{E} has $+\hat{i}$.
 - c) The electric current density J has direction $+\hat{i}$ and the applied electric field \vec{E} has $-\hat{i}$.
 - d) The electric current density J has direction $+\hat{i}$ and the applied electric field \vec{E} has $+\hat{i}$. (ANSWER)
- 6. The equivalent resistance of the network is
 - a) 4*R*.
 - b) 2*R*.
 - c) R. (ANSWER)
 - d) *R*/2.

7. During the discharging of a capacitor, the potential difference $V_C(t)$ across the capacitor versus the time t is described by the diagram

- 8. In the RC circuit below, the switch is closed at time t = 0. At time t = 0, the electric current is
 - a) I = 0. b) $I = \frac{\varepsilon}{R}$. (ANSWER) c) $I = \varepsilon R$. d) $I = C\varepsilon$.