Kuwait University

Physics Department

Physics 102 Midterm 1 Examination Spring Semester 2024 March 9, 2024

Time: 12:00 – 1:30 p.m.

Name: Student ID No:

Instructors: Drs. Alfailakawi, Lajko, Sharma, & Vagenas

Fundamental constants

(Coulomb constant)
(Permittivity of free space)
(Permeability of free space)
(Elementary unit of charge)
(Avogadro's number)
(Acceleration due to gravity)
(Electron mass)
(Proton mass)

Prefixes of units

$m = 10^{-3}$	μ= 10 ⁻⁶	$n = 10^{-9}$	$p = 10^{-12}$
$k = 10^{3}$	$M = 10^{6}$	$G = 10^9$	$T = 10^{12}$

For use by Instructors only

	Fotal
Marks	

Ques.	1	2	3	4	5	6	7	8	Total
Marks									

Important:

1. Mobiles or other electronic devices are <u>strictly prohibited</u> during the exam.

2. Programmable calculators, which can store equations, are not allowed.

3. Cheating incidents will be processed according to the university rules.

PART I. Solve the following problems. Show your solutions in detail.

1. Four charges are placed as shown in the figure, $q_1 = q_2 = q_3 = 5$ nC, and $q_4 = -5$ nC. Calculate the net electric field \vec{E} at the origin 0. [3 points]

2. A proton is released from rest in a uniform electric field as shown. What is the magnitude of the electric field *E* if the proton reaches the upper plate with a velocity $\vec{v} = 6 \times 10^6 \text{m/s}$ ĵ. Only the electric force is acting on the particle. [4 points]

$$\begin{split} v_y^2 &= v_{0y}^2 + 2a_y \, \Delta y \\ a_y &= 1.8 \times 10^{14} \text{ m/s}^2 \\ F_y &= m_p \, a_y = 3.00 \times 10^{-13} \text{ N} \\ E_y &= \frac{F_y}{q} = 1.88 \times 10^6 \text{ N/C} \end{split}$$

3. A charge $q = 3.5 \,\mu\text{C}$ is located along the axis of a ring at 0.65 m from its centre. The ring has radius 0.10 m, and a charge $-12.0 \ \mu C$ is distributed uniformly around it. What is the magnitude and direction of the force on the charge q? [4 points]

4. A charge $Q = 30 \,\mu\text{C}$ is uniformly distributed along a rod of length $L = 1.0 \,\text{m}$ on the x-axis, as shown. Calculate the electric field \vec{E} at point *A*. Take a = 10 cm. $A \qquad o \qquad 4 p = 1$ [4 points]

$\lambda = \frac{Q}{L} = \frac{30 \mu\text{C}}{1.0 \text{m}} = 3.0 \times 10^{-5} \text{C/m}$
$d\vec{E} = \frac{kdQ}{r^2}(-\hat{\imath}) = \frac{k\lambda dx}{(x+a)^2}(-\hat{\imath})$
$\vec{E} = \int_{a}^{a+L} \frac{k\lambda dx}{(x+a)^2} (-\hat{\imath})$
$= k\lambda \left[-\frac{1}{x+a}\right]_{a}^{a+L} = k\lambda \left[\frac{1}{2a} - \frac{1}{L+2a}\right] (\hat{\iota})$
$\vec{E} = 1.13 \times 10^6 \text{ N/C} (-\hat{\imath})$

→_x

х

q

5. A cube of sides L = 0.40 m, shown in the figure, has charges enclosed in it. The electric field thus produced is given by $\vec{E} = (0.30 \text{ m} + 0.50 \text{ x}) \times 10^6 \text{ N/C} \cdot \text{m} \hat{\imath}$, where x is in meters. What is the charge enclosed in the cube? y • [4 points]

Flux through all faces except the left and the right faces is zero. $\phi_{\text{total}} = (0.30 \times 10^{6} \hat{\imath}). (-L^{2} \hat{\imath}) + (0.30 + 0.5 \times 0.40) \times 10^{6} \hat{\imath}. (L^{2} \hat{\imath})$ $= -4.8 \times 10^{4} + 8.0 \times 10^{4}$ $\phi_{total} = \frac{q_{\text{encl}}}{\varepsilon_{0}}$ $q_{\text{encl}} = \varepsilon_{0} \phi_{total} = 8.85 \times 10^{-12} \times 3.2 \times 10^{4}$

6. Three large sheets carry uniform surface charge densities $\sigma_1 = +1.770 \text{ nC/m}^2$, $\sigma_2 = -0.885 \text{ nC/m}^2$ and $\sigma_3 = +1.770 \text{ nC/m}^2$. What is the net electric field \vec{E} at point *P*? [4 Points]

$$\vec{E}_{1} = \frac{|\sigma_{1}|}{2\epsilon_{0}} \hat{\imath} = \frac{1.770 \times 10^{-9}}{2 \times 8.85 \times 10^{-12}} \hat{\imath} = 100 \hat{\imath} \text{ N/C}$$
$$\vec{E}_{2} = \frac{|\sigma_{2}|}{2\epsilon_{0}} (-\hat{\imath}) = -\frac{0.885 \times 10^{-9}}{2 \times 8.85 \times 10^{-12}} \hat{\imath} = -50 \hat{\imath} \text{ N/C}$$
$$\vec{E}_{3} = \frac{|\sigma_{3}|}{2\epsilon_{0}} (-\hat{\imath}) = -\frac{1.770 \times 10^{-9}}{2 \times 8.85 \times 10^{-12}} \hat{\imath} = -100 \hat{\imath} \text{ N/C}$$
$$\vec{E} = \vec{E}_{1} + \vec{E}_{2} + \vec{E}_{3} = -50 \hat{\imath} \text{ N/C}$$

7. A solid non-conducting sphere of radius 0.45 m has a volume charge density $\rho = 7.5 \times 10^{-6} \text{ C/m}^3$. What is the magnitude and direction of electric field at a point 0.30 m from the centre of the sphere?

[3 points]

 $\rho = \frac{Q}{v} \to Q = \rho. V = \rho. \frac{4}{3}\pi R^3 = 2.9 \times 10^{-6} \text{ C}$ $E = k \frac{Qr}{R^3} = \frac{9 \times 10^9 \times 2.86 \times 10^{-6} \times 0.30}{0.45^3} = 8.5 \times 10^4 \text{ N/C}$ Direction: Radially outwards.

8. A charge $Q = 6.0 \ \mu\text{C}$ is held at rest. Another charge $q = 3.0 \ \mu\text{C}$ with mass $m = 7.0 \times 10^{-12} \ \text{kg}$ moves with a speed $v_i = 4.6 \times 10^5 \ \text{m/s}$ toward Q when it is at a distance 0.60 m. What will be the speed of qwhen it reaches a distance 0.30 m from Q? [4 points]

 $K_{f} + U_{f} = K_{i} + U_{i}$ $\frac{1}{2}mv_{f}^{2} + k\frac{Qq}{r_{f}} = \frac{1}{2}mv_{i}^{2} + k\frac{Qq}{r_{i}}$ $\frac{1}{2}mv_{f}^{2} + 0.54 = 0.74 + 0.27 \text{ J}$ $\frac{1}{2}mv_{f}^{2} = 0.47 \text{ J}$ $v_{f} = \sqrt{\frac{2 \times 0.47}{7.0 \times 10^{-12}}} = 3.7 \times 10^{5} \text{ m/s}$

PART II : Conceptual Questions (each carries 1 point). Tick the best answer.

- 1. Two charged particles of identical mass *m* and with charges $Q_1 > Q_2$ which are close to each other are released from rest. If a_1 and a_2 respectively are the magnitudes of their accelerations, it must be:
 - a. $a_1 < a_2$. b. $a_1 = a_2$. c. $a_1 > a_2$. d. $a_1 = a_2 = 0$.
- 2. The electric field due to q_1 , q_2 , and q_3 are as shown in the figure. Which statement is true?

- 3. The amount of force per unit positive charge is:
 - a. The electric field.
 - b. The electric field line.
 - c. The electric flux.
 - d. The Coulomb's force.
- 4. A charge *Q* is uniformly distributed over the surface of a cube of side *L*. The surface charge density of the cube is:

a.
$$\sigma = \frac{Q}{L^2}$$
.
b. $\sigma = 4 \frac{Q}{L^2}$.
c. $\sigma = \frac{Q}{6 L^2}$.
d. $\sigma = \frac{Q}{(2L)^2}$.

- 5. A charge q is placed in the cavity of an uncharged conductor. The electric field at a distance r from the charge, as shown in the figure, is:
 - a. $E = k \frac{q}{r^2}$. b. $E = 4/3\pi q r^2$. c. E = 0. d. $E = -k \frac{q}{r^2}$.
- 6. A charge -q is placed at the centre of a conducting spherical shell having a net charge +2q. What is the charge on the outer surface of the shell?
 - a. -2q. b. -q. c. +2q. d. +q.
- 7. Four systems of particles are shown below. Which statement is true for their electric potential energies?
 - a. $U_A > U_B > U_C > U_D$ b. $U_A > U_B = U_D > U_C$ c. $U_D > U_C > U_A > U_B$ d. $U_A > U_C > U_B > U_D$ (A) (C) (C) (C) (C) (B) (D)
- 8. Three enclosed surfaces S_1 , S_2 and S_3 are shown. What is the flux of electric field through S_2 ?
 - a. $\Phi_E = \frac{q}{\epsilon_0}$ b. $\Phi_E = \frac{-2q}{\epsilon_0}$ c. $\Phi_E = \frac{2q}{\epsilon_0}$ d. $\Phi_E = \frac{-q}{\epsilon_0}$

