

Kuwait University

Physics Department

Physics 102

First Midterm Examination Spring Semester (2022 - 2023) March 20, 2023

Time: 6:30 – 8:00 PM

Name	Student ID
Section No	Serial No

Instructors: Drs. Afrousheh, Alfailakawi, Hadipour, Lajko, Sharma and Vagenas.

Fundamental constants

$k = \frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 \text{ N}.\text{ m}^2/\text{C}^2$	(Coulomb constant)
$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)
$\mu_0 = 4\pi \times 10^{-7} \text{ T} .m/\text{A}$	(Permeability of free space)
$ e = 1.60 \times 10^{-19} C$	(Elementary unit of charge)
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)
$1 eV = 1.6 \times 10^{-19} I$	

Prefixes of units

$m = 10^{-3}$	$\mu = 10^{-6}$	$n = 10^{-9}$	$p = 10^{-12}$
$k = 10^{3}$	$M = 10^{6}$	$G = 10^9$	$T = 10^{12}$

For use by Instructors only

Prob.	1	2	3	4	5	6	7	8	Questions	Total
Marks										

Part I. Solve the following problems. Show your solutions in detail.

1. Four point charges are placed on x and y axes as shown. If $q_1 = +3.0 \ \mu\text{C}$, $q_2 = +4.0 \ \mu\text{C}$, $q_3 = -1.5 \ \mu\text{C}$, and $q_4 = +5.0 \ \mu\text{C}$. Find the net electric force \vec{F} acting on charge q_1 . [4 points]

2. A thin rod of length L = 12.5 cm with a uniform charge density of $\lambda = +1.2$ nC/m is placed along the *x*-axis as shown. Calculate the electric field of the rod at point *A*. [4 points]

Y **▲**

$$\vec{E} = \int_{0.125}^{0.25} k \frac{\lambda dx}{x^2} (-\hat{\imath}) = -(43.2 \text{ N/C})\hat{\imath}$$

$$\frac{4.5 \text{ cm}}{A \text{ ol}} = \frac{4.5 \text{ cm}}{A \text{ ol}} = -(43.2 \text{ N/C})\hat{\imath}$$

3. An electron is moving at a velocity of $\vec{v} = (5.0 \times 10^6 \text{ m/s})\hat{\iota}$. Find the uniform electric field that can stop the electron in a distance of 5.0 cm. [3 Points]

$$\vec{a} = -\frac{v_0^2}{2\Delta x}\hat{\imath} = -(2.5 \times 10^{14} \text{ m/s}^2)\hat{\imath}$$
$$\vec{F} = m\vec{a} = -(2.275 \times 10^{-16} \text{ N})\hat{\imath}$$
$$\vec{E} = \frac{\vec{F}}{-e} = (1422 \text{ N/C})\hat{\imath}$$

4. A non-conducting spherical shell with inner radius a = 40 cm and outer radius b = 70 cm is uniformly charged. If the electric field at a distance of r = 55 cm from its center is 30 N/C pointing inward, calculate the volume charge density ρ of the sphere. [4 points]

$$\oint \vec{E} \cdot d\vec{A} = -4\pi r^2 E = \frac{Q_{enc}}{\varepsilon_0}$$
$$Q_{enc} = -\frac{(0.55)^2 \times 30}{9 \times 10^9} = -1 \times 10^{-9}$$
$$\rho = \frac{Q_{enc}}{\frac{4\pi}{3} (r^3 - a^3)}$$

$$\rho = \frac{-3 \times 1 \times 10^{-9}}{4 \times 3.14 \times (0.166 - 0.064)} = -2.34 \,\mathrm{nC/m^3}$$

С

5. Two uniformly charged parallel infinite plates are perpendicular to x-axis as shown. The surface charge density on one plate is $\sigma_1 = 15.0 \text{ nC/m}^2$ and the net electric field at point P is given as $\vec{E} = -(1000 \text{ N/C})\hat{\imath}$. Find the surface charge density σ_2 . [4 points]

6. A ring of uniform charge Q = -50 nC and of radius a = 6.0 cm is placed on the yz-plane and is centered at the origin. A point charge q = 0.45 μC with a mass of m = 1.5 × 10⁻⁶ kg is released from rest at point A on the x-axis. Find the speed of the point charge when it is at point B. [5 points]

7. The three points *a*, *b*, and *c* are in a uniform electric field as shown. The potential difference between points *a* and *c* is $V_{ac} = 600$ V. How much work must be done on an electron by an external force to move it from point *b* to *c*? Write your answer in eV. [4 Points]

 $W_{ext} = -W_E = eEd = 1 \times 1.0 \times 10^5 \times 0.004 = 400 \text{ eV}$

8. A conducting spherical shell of inner radius a = 4.0 cm and outer radius b = 6.0 cm carries a net charge Q = -10.0 nC. A point charge q = 5.0 nC is placed at the center of the shell. Calculate the electric potential at a distance of 3.0 cm from the center of the shell. [4 points]

$$V = k\frac{q}{r} + k\frac{-q}{a} + k\frac{q+Q}{b}$$
$$V = -375 \text{ V}$$

PART II : Conceptual Questions (each carries 1 point). Tick the best answer.

- 1. Which one of the following values can be the net charge of a free particle?
 - a) 4.0×10^{-19} C.
 - b) -4.0×10^{-19} C.
 - c) 3.2×10^{-20} C.
 - d) 3.2×10^{-18} C.
- 2. Two point charges q_1 and q_2 are placed on the x-axis as shown. The net electric field \vec{E} at point P on y-axis
- a) is zero if $q_1 = q_2$. b) is zero if $|q_1| = |q_2|$. c) is zero if $q_1 = -q_2$. d) is never zero. $q_1 \leftarrow \dots = q_2$
- 3. Two positive point charges q_1 and q_2 of the same mass are released from rest at the same distance from a negatively charged infinite plate. The point charges have speeds v_1 and v_2 when they reach the plate. Which statement is correct?
 - a) $v_1 > v_2$ if $q_1 > q_2$. b) $v_1 > v_2$ if $q_1 < q_2$. c) $v_1 = v_2$ for any q_1 and q_2 .
 - d) any of the above depending on the charge of the plate.
- 4. Which statement is **wrong** about linear charge density λ ?
 - a) λ is a constant for a uniform charge distribution.
 - b) λ is a constant for any charge distribution.
 - c) λ is a constant for a uniformly charged infinite line.
 - d) λ can be greater than the total charge of the line.

 $q_1 \bullet$

 $q_2 \bullet$

5. A conducting sphere is placed between two oppositely charged plates as shown. The electric field \vec{E} inside the sphere is: \mathcal{Y}

- 6. A positive point charge q moves from point a to b near two positively charged infinite plates as shown. In this motion the electric potential energy of the point charge
 - a) decreases.
 - b) increases.
 - c) does not change.
 - d) does not change if $\sigma_1 = \sigma_2$.

- 7. Which one of the following **is not** the unit of electric field?
 - a) N/C.
 - b) V/m.

c)
$$\frac{J}{C \cdot m}$$

d) $\frac{J \cdot m}{C}$.

- 8. Two concentric conducting spherical shells carry equal charges Q. A point charge q is moved between different points on these shells. Which statement is correct regarding the work done on q by the electric field?
 - a) $W_{A\to D} > W_{A\to C}$.
 - b) $W_{A \rightarrow D} = W_{A \rightarrow C}$.
 - c) $W_{C \to D} > W_{A \to B}$.
 - d) $W_{C \to D} < W_{A \to B}$.

