Kuwait University

General Physics II

Physics Department

PHY 102

Final Examination Spring Semester 2023 – 2024

May 22, 2024 Time: 5:00 – 7:00 PM

Name:	Student No:
Sec. No:	Serial No:

Instructors: Drs. Alaa Alfailakawi, Peter Lajko, Madan Sharma, and Elias Vagenas

Fundamental constants

$k = \frac{1}{4\pi\epsilon_{o}} = 9.0 \times 10^{9} \text{ N.m}^{2} / \text{C}^{2}$	(Coulomb constant)					
$\varepsilon_o = 8.85 \times 10^{-12} \mathrm{C}^2 /(\mathrm{N}\cdot\mathrm{m}^2)$	(Permittivity of free space)					
$\mu_0=4\pi\times 10^{\text{-7}} \text{ T} \text{ .m/A}$	(Permeability of free space)					
$ e = 1.60 \times 10^{-19} \text{ C}$	(Elementary unit of charge)					
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)					
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)					
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)					
$m_p = 1.67 \times 10^{-27} \mathrm{kg}$	(Proton mass)					
$\begin{array}{l} \underline{Prefixes \ of \ units} \\ m = 10^{-3} \qquad \mu = 10^{-6} \\ k = 10^{3} \qquad M = 10^{6} \end{array}$						

For use by Instructors only

Problems	1	2	3	4	5	6	7	8	9	10	Questions	Total
Marks												

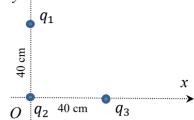
Instructions to the Students:

1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.

- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

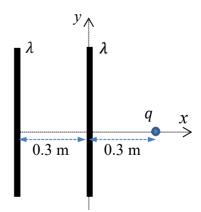
1. Three point charges, $q_1 = q_2 = q_3 = 4 \mu C$, are placed on the *xy*-plane, as shown. Calculate the *x* and *y* components of the net electric force, \vec{F}_3 , acting on q_3 . [4 points]


$$r_{13} = \sqrt{(0.4 \text{ m})^2 + (0.4 \text{ m})^2} = 0.57 \text{ m}$$

$$F_{13,x} = k \frac{|q_1q_3|}{r_{13}^2} \cos(\theta); F_{13,y} = -k \frac{|q_1q_3|}{r_{13}^2} \sin(\theta);$$

$$F_{23,x} = k \frac{|q_2q_3|}{r_{23}^2}; \quad F_{23,y} = 0;$$

$$F_{3,x} = F_{13,x} + F_{23,x} = k \frac{|q_1q_3|}{r_{13}^2} \cos(\theta) + k \frac{|q_2q_3|}{r_{23}^2} = 1.22 \text{ N}$$

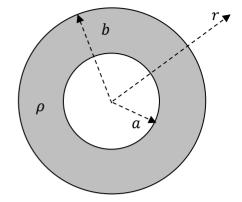

 $F_{3,y} = F_{13,y} + F_{23,y} = -k \frac{|q_1 q_3|}{r_{13}^2} \sin(\theta) + 0 = -0.32 \text{ N}$

2. Two very long uniformly charged lines, with equal linear charge densities, λ , are placed perpendicular to the *x*-axis, as shown. If the net force acting on the point charge $q = 3 \ \mu C$ is $\vec{F}_{net} = (6N)\hat{i}$, find the value of λ . [4 point]

$$\vec{E}_1 = \frac{\lambda}{2\pi\varepsilon_0 0.6\mathrm{m}} \hat{\iota}$$
$$\vec{E}_2 = \frac{\lambda}{2\pi\varepsilon_0 0.3\mathrm{m}} \hat{\iota}$$

 $\vec{F}_{net} = q(\vec{E}_1 + \vec{E}_2) = (6 \text{ N})\hat{\imath} \Rightarrow \lambda = 22.2 \ \mu\text{C/m}$

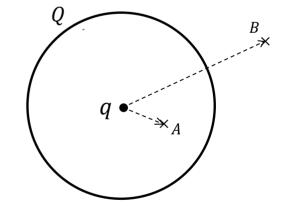
3. A spherical shell of inner radius a = 5 cm and outer radius b = 10 cm has uniform volume charge density $\rho = 480 \text{ nC/m}^3$. Find the magnitude and direction of the electric field at 40 cm radial distance from the center. [3 points]

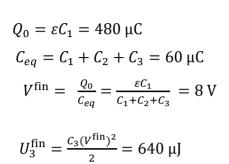

Gauss's Law:

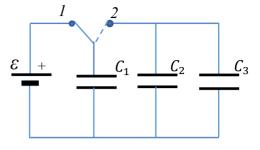
$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$

$$E(4\pi r^2) = \frac{Q_{enc}}{\varepsilon_0}$$

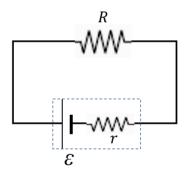
$$Q_{encl} = \rho \left(\frac{4}{3}\pi (b^3 - a^3)\right)$$


$$E = \frac{Q_{enc}}{4\pi r^2 \varepsilon_0} = 99 \text{ N/C}, \text{ outward}$$


4. A spherical surface of radius R = 0.5 m has charge Q = 2q uniformly distributed on its surface and a point charge q is fixed at its centre. If V = 0 at infinity, the electric potential at point A is 360 V. What is the electric potential at point B? Given $r_A = 0.25$ m and $r_B = 1.0$ m. [4 points]


$$V_A = V_{qA} + V_{QA} = k \frac{q}{r_A} + k \frac{2q}{R} = 360 \text{ V} \Rightarrow$$
$$q = 5 \text{ nC}$$

$$V_B = V_{qB} + V_{QB} = k \frac{q}{r_B} + k \frac{2q}{r_B} = 135 V$$


5. A capacitor, $C_1 = 20 \ \mu\text{F}$, is charged by a battery, $\varepsilon = 24 \text{ V}$, as shown. Then the switch is moved to position 2 so that the capacitor C_1 is connected to uncharged capacitors C_2 and C_3 . If $C_2 = C_3 = 20 \ \mu\text{F}$, what is the final energy stored in C_3 ? [4 points]

6. In the circuit shown below, $\varepsilon = 24$ V, $r = 1.3 \Omega$, and the terminal voltage of the battery is 21. 4 V. Find the power dissipated on resistor *R*. [4 points]

$$V_{ab} = \varepsilon - Ir = 24 V - I1.3\Omega = 21.4 V$$
$$\Rightarrow I = 2 A$$
$$I = \frac{\varepsilon}{r+R} \Rightarrow R = 10.7 \Omega$$
$$P = I^2 R = 42.8 W$$

7. In the circuit below, the initial charge on the capacitor is $Q_0 = 40$ nC and the switch is closed at time t = 0 s. Calculate the time t at which the current in the circuit, I, drops to 1/4 of its initial value. [4 points]

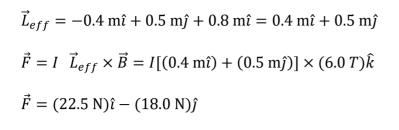
8. A point charge q = 0.4 C moves momentarily with velocity $\vec{v} = (5 \frac{\text{m}}{\text{s}})\hat{i} + (8 \frac{\text{m}}{\text{s}})\hat{j}$ in a region of uniform magnetic field $\vec{B} = (3 \text{ T})\hat{k}$ and uniform electric field \vec{E} so that the net force acting on the point charge is $\vec{F} = (20 \text{ N})\hat{i} + (16 \text{ N})\hat{j}$. Calculate the electric field \vec{E} . [4 points]

$$\vec{F}_{net} = q\vec{E} + q\vec{v} \times \vec{B} \Rightarrow \vec{E} = \frac{\vec{F}_{net} - q\vec{v} \times \vec{B}}{q}$$
$$\vec{E} = 26\frac{N}{C}\hat{i} + 55\frac{N}{C}\hat{j}$$

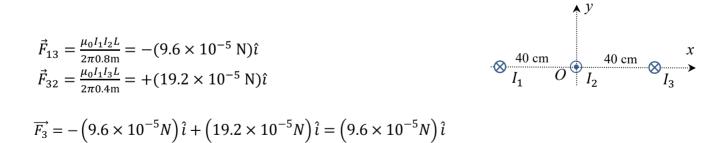
9. A current I = 7.5 A flows in a wire from the origin to point *P*, as shown. Calculate the magnetic force vector acting on the wire by a uniform magnetic field $\vec{B} = (6.0 T)\hat{k}$. [3 points]

y▲

80i*cm*


0

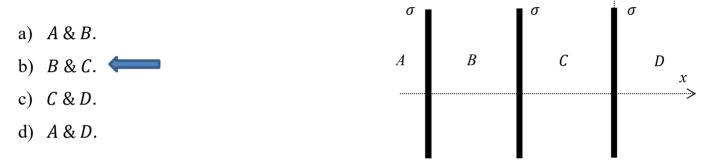
40 cm


х

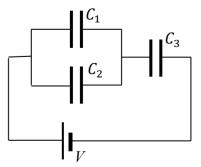
cm

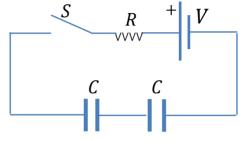
50

10. Three very long, parallel wires are perpendicular to the *xy*-plane and carry currents of magnitude $I_1 = I_2 = I_3 = 8$ A in the directions, as shown. Calculate the net force acting on a 6-m length on the wire of I_3 . [3 points]



PART II: Conceptual Questions (each carries 1 point). Tick the best answer:


1. Point charge q_1 is fixed on the *x*-axis. Point charge q_2 is released from point *O* and moves to point *P*, as shown. If the electric force on q_2 is \vec{F} at point *P*, at point *O* it was


2. Three parallel infinite large planes have uniform surface charge densities σ . In which region is the magnitude of the electric field smallest?

- 3. Three points *A*, *B*, and *C*, are located around two point charges (q > 0), as shown. If V = 0 at infinity, at which of these points is the electric potential smallest?
 - a) A. b) B. A q B -q C
 - c) *C*.
 - d) All the points are on the same potential.
- 4. Three different capacitors are connected into a network as shown. Which statement is correct?
 - a) The potential on C_1 is the same as on C_2 .
 - b) The potential on C_1 is the same as on C_3 .
 - c) The charge of C_1 is the same as of C_2 .
 - d) The charge of C_1 is the same as of C_3

- 5. Cylindrical resistor A has length L, radius r and resistance R_A . Cylindrical resistor B is made of the same material, it has length 2L, radius 2r, and resistance R_B . Which relation is correct?
 - a) $R_A = R_B$. b) $R_A = 2R_B$. c) $R_A = R_B/2$.
 - d) $R_A = 4R_B$.
- 6. In the *R*-*C* circuit below, the switch is closed at time t = 0 s. After waiting a long time, the electric energy on the left capacitor is
 - a) $U_L = CV^2$. b) $U_L = \frac{CV^2}{2}$. c) $U_L = \frac{CV^2}{4}$. d) $U_L = \frac{CV^2}{8}$.

- 7. A charged particle moves in a region of uniform magnetic field on a helical path. If the pitch of the helical path is larger than its radius, which relation is true for the parallel and perpendicular components of the velocity?
 - a) $v_{\parallel} < v_{\perp}$.
 - b) $v_{\parallel} > v_{\perp}$.
 - c) $2\pi v_{\parallel} < v_{\perp}$.
 - d) $2\pi v_{\parallel} > v_{\perp}$.
- 8. A wire carries a current, I = 4 A, along the *y*-axis as shown in the figure. At which point does the magnetic field show along the positive *z*-axis?

