Kuwait University

Physics Department

Physics 102 Final Examination Spring Semester 2023 May 13, 2023

Time: 17:00 – 19:00

Name: Student ID No:

Instructors: Drs. Afrousheh, Alfailakawi, Hadipour, Lajko, Sharma, & Vagenas

Fundamental constants

(Coulomb constant)
(Permittivity of free space)
(Permeability of free space)
(Elementary unit of charge)
(Avogadro's number)
(Acceleration due to gravity)
(Electron mass)
(Proton mass)

Prefixes of units

$m = 10^{-3}$	$\mu = 10^{-6}$	$n = 10^{-9}$	$p = 10^{-12}$
$k = 10^3$	$M = 10^{6}$	$G = 10^9$	$T = 10^{12}$

For use by Instructors only

Prob.	1	2	3	4	5	6	7	8	9	10	Total
Marks											

Ques.	1	2	3	4	5	6	7	8	Total
Marks									

Important:

1. Mobiles or other electronic devices are <u>strictly prohibited</u> during the exam.

2. Programmable calculators, which can store equations, are not allowed.

3. Cheating incidents will be processed according to the university rules.

PART I. Solve the following problems. Show your solutions in detail.

1. Two long uniformly charged lines with charge densities $\lambda_1 = 9 \text{ nC/m}$ and $\lambda_2 = -6 \text{ nC/m}$ are placed perpendicular to the *x*-axis. Find the net electric force vector \vec{F} acting on the point charge q = 4 nC, shown in the figure. [3 points]

2. A sphere of radius a = 30 cm is concentric with a thin spherical shell of radius b = 50 cm. The sphere has a uniform volume charge density of $\rho = -180$ nC/m³ and the spherical shell has a uniform surface charge density of $\sigma = 15$ nC/m². Find the magnitude and direction (in or out) of the net electric field at a radial distance r = 60 cm from the center. [4 points]

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{sur} + Q_{vol}}{\varepsilon_0}$$
$$E4\pi r^2 = \frac{\sigma 4\pi b^2 + \rho \frac{4\pi a^3}{3}}{\varepsilon_0} =$$
$$E = 669 \frac{N}{C}. \quad \text{out.}$$

3. Point charges $q_1 = q$ and $q_2 = -q$ are fixed along the *x*-axis as shown. When a third point charge $q_3 = q$ is at the origin *O*, its potential energy is $U(q_3) = -4$ nJ. What is the potential energy of q_3 if it is placed at point *P*? [4 points]

$$U(q_3) = kq^2 \left(\frac{1}{0.5m} - \frac{1}{0.2m}\right) = -2.4 \text{ nJ}$$

4. A capacitor $C_1 = 8 \ \mu\text{F}$ is charged by a battery of $\mathcal{E} = 6 \ \text{V}$. Then the switch is thrown to position 2 and capacitor C_1 is connected to an uncharged capacitor $C_2 = 16 \ \mu\text{F}$, as shown. Find the final energy stored in the capacitor C_2 . [4 points]

$$V_{fin} = \frac{Q_1}{C_1 + C_2} = \frac{C_1 \mathcal{E}}{C_1 + C_2} = 2 V$$
$$U_2 = \frac{C_2 V_{fin}^2}{2} = 32 \,\mu \text{J}$$

 $Q_1 = C_1 \mathcal{E}$

5. A cylindrical metallic wire of length L = 50.0 m has a potential difference V = 50 V. The wire has a concentration of free electrons $n = 8.5 \times 10^{28}$ m⁻³ and its resistivity is $\rho = 1.72 \times 10^{-8} \,\Omega \cdot m$. Calculate the time the electrons take to move along the length of the wire. [4 points]

$$J = n|e|v_d$$
 and $J = \frac{E}{\rho} = \frac{V}{\rho L}$

$$t = \frac{L}{v_d} = \frac{L}{\frac{J}{nq}} = \frac{Lnq}{J} = \frac{Lnq}{\frac{V}{L\rho}} = \frac{L^2nq\rho}{V} = 11696 s$$

6. In the circuit shown, $\mathcal{E} = 24$ V and the three resistors have identical resistance $R_1 = R_2 = R_3 = 4 \Omega$. Determine the value of current *I* through R_1 . [4 points]

$$R_{12} = \frac{R \cdot R}{R + R} = \frac{R}{2} = 2 \Omega$$
$$R_{123} = R_{12} + R_3 = 6 \Omega$$
$$I_{123} = \frac{\varepsilon}{R_{123}} = 4 \text{ A}$$
$$I = \frac{I_{123}}{2} = 2 \text{ A}$$

7. In the *RC* circuit below, the initial charge of the capacitor *C* is $Q_0 = 40 \ \mu\text{C}$. At time t = 0 s, the switch *S* is closed. Find the time at which the energy stored in the capacitor is $\frac{1}{4}$ of its initial value. [3 points]

$$q(t) = Q_0 e^{-\frac{t}{RC}} \Rightarrow U(t) = \frac{q^2(t)}{2C} = \frac{Q_0^2 e^{-\frac{2t}{RC}}}{2C} = U_0 e^{-\frac{2t}{RC}}$$

$$R = 3 \text{ k}\Omega$$

$$\frac{U_0}{4} = U_0 e^{-\frac{2t}{RC}} \Rightarrow \frac{1}{4} = e^{-\frac{2t}{RC}} \Rightarrow$$

$$C = 10 \text{ }\mu\text{F}$$

$$\ln\left(\frac{1}{4}\right) = -\frac{2t}{RC} \Rightarrow t = -\frac{RC}{2}\ln\left(\frac{1}{4}\right) = 20.8 \text{ ms}$$

8. An electron enters with a velocity $\vec{v} = (1.5 \times 10^5 \text{ m/s})\hat{i} + (2 \times 10^5 \text{ m/s})\hat{j} + (3 \times 10^5 \text{ m/s})\hat{k}$ into a region of uniform magnetic field $\vec{B} = (2 \text{ T})\hat{i}$. Find the radius of the path of the electron. [3 points]

$$v_{\perp} = \sqrt{v_y^2 + v_z^2} = 3.6 \times 10^5 \frac{\text{m}}{\text{s}}.$$

 $R = \frac{m_e v_{\perp}}{eB} = 10.25 \times 10^{-7} \text{ m}.$

9. A bent wire carries a current I = 4.5 A, as shown in the figure. Find the net magnetic force acting on the wire due to the uniform magnetic field $\vec{B} = (2 T)\hat{k}$. [3 points]

 $\vec{F} = I\vec{L} \times \vec{B}$ $\vec{F} = 4.5A((0.2 \text{ m})\hat{\imath} + (0.3 \text{ m})\hat{\jmath}) \times (2 \text{ T})\hat{k}$ $\vec{F} = (2.7 \text{ N})\hat{\imath} + (-1.8 \text{ N})\hat{\jmath}$

у

10. Two long parallel wires carry identical current I = 10 A perpendicular to the plane as shown. Calculate the net magnetic field \vec{B} at point *P*. [4 points]

PART II : Conceptual Questions (each carries 1 point). Tick the best answer.

- 1. When two point charges q_1 and q_2 are at a distance r, the magnitude of electric force acting on q_2 is F. If both the charges and the distance are doubled, the magnitude of force on q_2 is
 - a) F.
 - b) 2*F*.
 - c) *F*/2.
 - d) *F*/4.
- 2. A conducting spherical shell has a net charge Q and a point charge q is at its center. If the electric field at point P has a direction pointing towards the center of the shell, which statement is correct for the charges?
 - a) |q| < -|Q|.
 - b) q + Q > 0.
 - c) |q + Q| < 0.
 - d) q + Q < 0.

- 3. A uniformly charged large sheet has surface charge density $\sigma < 0$. Which statement is correct for the electric potential at point *A* and *B*?
 - a) $V_A < V_B$.
 - b) $V_A > V_B$.
 - c) $V_A = V_B$.
 - d) None of the above.

- 4. Capacitors C_1 and C_2 are connected to a battery in series and in parallel connections as shown. In which case is the stored energy larger?
 - a) A.
 - b) *B*.
 - c) The stored energy is the same in both cases.
 - d) If $C_1 < C_2$, in case *A*, otherwise in case *B*.

- 5. Two cylindrical wires are made of identical material with identical cross-section. Wire 1 has twice the length of wire 2. If both wires are separately connected to the same potential difference, the currents have the relation
 - a) $I_1 = I_2$.
 - b) $I_1 = 2I_2$.
 - c) $I_1 = 4I_2$.
 - d) $I_1 = I_2/2$.
- 6. A junction point *O* is shown with four wires. Which statement is correct for the current between points *A* and *O*?
 - a) 1 A from 0 to A. b) 1 A from A to 0. c) 2 A from 0 to A. d) 2 A from A to 0.
- 7. A circular loop of wire carries a constant current. If the loop is placed in a region of uniform magnetic field, the net magnetic force on the loop
 - a) is perpendicular to the plane of the loop, in a direction given by the right-hand rule.
 - b) is perpendicular to the plane of the loop, in a direction given by the left-hand rule.
 - c) is in the same plane as the loop.
 - d) is zero.
- 8. A bent wire carries a current *I*, as shown. What is the direction of the magnetic field \vec{B} at point *P* due to this current?
 - a) to the right.
 - b) to the left.
 - c) out of the plane of the figure.
 - d) into the plane of the figure.

