Kuwait University

General Physics II

Physics Department

PHY 102

Second Midterm Examination Fall Semester 2024 - 2025

November 30, 2024 Time: 11:00 AM – 12:30 PM

Name:	Student No:
Section No:	Serial No:

Instructors: Drs. Abdullah, Al-Munin, Lajko, Sharma, & Vagenas

Fundamental constants							
$k = \frac{1}{4\pi\epsilon} = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2$	(Coulomb constant)						
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)						
$\mu_0=4\pi\times 10^{\text{-7}}~T.m/A$	(Permeability of free space)						
$ e = 1.60 \times 10^{-19} \text{ C}$	(Elementary unit of charge)						
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)						
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)						
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)						
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)						
$\begin{array}{l} \underline{\text{Prefixes of units}} \\ m = 10^{-3} & \mu = 10^{-6} \\ k = 10^{3} & M = 10^{6} \end{array}$							

For use by Instructors only

Problems	1	2	3	4	5	6	7	8	Questions	Total
Marks										

Instructions to the Students:

- 1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

1. An infinite sheet of uniform surface charge density σ is placed perpendicular to the *y*-axis, as shown. If the potential difference $V_A - V_B$ between the two points A and B is 60 V, find the surface charge density σ . [4 points]

$$d\vec{l} = dx \,\hat{\imath} + dy \,\hat{\jmath}$$

$$\vec{E} = \frac{\sigma}{2\varepsilon_0} \hat{\jmath}$$

$$V_A - V_B = \int \vec{E} \cdot d\vec{l}$$

$$V_A - V_B = \int \left(\frac{\sigma}{2\varepsilon_0} \hat{\jmath}\right) \cdot (dx \,\hat{\imath} + dy \,\hat{\jmath})$$

$$V_A - V_B = \frac{\sigma}{2\varepsilon_0} \int_{0.02 \, m}^{0.04 \, m} dy = \frac{\sigma}{2 \times 8.85 \times 10^{-12}} (0.04 - 0.02) = 60 \, \text{V}$$

$$\sigma = 53.1 \, \text{nC/m}^2$$

2. In the given network of capacitors with $C_1 = C_2 = 10 \ \mu\text{F}$ and $C_3 = 20 \ \mu\text{F}$, the charge on capacitor C_1 is $Q_1 = 20 \ \mu\text{C}$. Find the charge on capacitor C_3 . [4 points]

$$V_1 = \frac{q_1}{c_1} = 2 \text{ V} \Longrightarrow V_{12} = V_1 = V_2 = 2 \text{ V}$$

 $Q_2 = C_2 V_2 = 20 \text{ }\mu\text{C}$

$$Q_{12} = Q_1 + Q_2 = 60 \ \mu C$$

Since C_{12} and C_3 are in series, $Q_3 = Q_{12} = 40 \ \mu C$

3. An air-filled parallel-plate capacitor with a surface area A and a plate separation d, has capacitance $C_0 = 20 \ \mu\text{F}$. The capacitor is partially filled with a dielectric material of dielectric constant K = 4, as shown. Find the capacitance C of this arrangement. [4 points]

4. When a cylindrical wire of silver is connected to a battery of 3 V, the power dissipated on it is 15 W. The radius of the silver wire is 0.35 mm and the concentration of free electrons is 5.80×10^{28} m⁻³. Calculate the drift speed v_d of the electrons. [3 points]

$$P = I V \Longrightarrow I = \frac{P}{v} \Longrightarrow I = 5 \text{ A}$$
$$I = JA \Longrightarrow I = n|e|v_d A \Longrightarrow I = n|e|v_d \pi r^2$$
$$v_d = \frac{I}{n|e|\pi r^2} \Longrightarrow v_d = 1.4 \times 10^{-3} \text{ m/s}$$

5. In the circuit below, find the power dissipated in the internal resistance r_1 .

$$V_{term,2} = \varepsilon_2 - Ir_2$$

$$V_{term,1} = \varepsilon_1 + Ir_1$$

$$V_{term,2} = V_{term,1} \Longrightarrow \varepsilon_2 - Ir_2 = \varepsilon_1 + Ir_1$$

$$I = \frac{\varepsilon_2 - \varepsilon_1}{r_1 + r_2} \Longrightarrow I = 2 \text{ A}$$

$$P_1 = I^2 r_1 \Longrightarrow P_1 = 4 \text{ W}$$

2nd solution:

Loop rule (anti-clockwise) $10 - 5 - Ir_1 - Ir_2 = 0$ $10 - 5 - I - 1.5I = 0 \Longrightarrow I = 2 \text{ A}$ $P_1 = I \,{}^2r_1 \Longrightarrow P_1 = 4 \text{ W}$

6. In the circuit below, find the equivalent resistance R_{eq} between the terminal points a and b. [4 Points]

 R_1 and R_2 are in series: $R_{12} = R_1 + R_2 \Longrightarrow R_{12} = 10 \ \Omega$

 R_4 and R_5 are in series: $R_{45} = R_4 + R_5 \Longrightarrow R_{45} = 10 \ \Omega$

 $R_{12}, R_{45}, \text{ and } R_3 \text{ are in parallel:}$ $\frac{1}{R_{eq}} = \frac{1}{R_{12}} + \frac{1}{R_3} + \frac{1}{R_{45}}$

 $\frac{1}{R_{eq}} = \frac{1}{10 \Omega} + \frac{1}{5 \Omega} + \frac{1}{10 \Omega} \Longrightarrow R_{eq} = 2.5 \Omega$

7. Find the electric currents I_1 and I_2 , in the circuit below.

8. The capacitor has an initial charge $Q_0 = 40 \ \mu\text{C}$ and the switch S is closed at time t = 0 s. At time t_1 the charge of the capacitor is half of the initial charge. Find the electric current at the time t_1 . [3 Points]

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:

- 1. Which statement is correct? In electrostatic situation,
 - a) on the outer surface of a charged conductor the electric field is zero.
 - b) inside a charged conductor the electric field is nonzero.
 - c) the full volume of a charged conductor is an equipotential volume. (ANSWER)
 - d) on the outer surface of a charged conductor the electric field is parallel to the surface.
- 2. An air-filled parallel-plate capacitor with plate separation d, area A, and capacitance C is charged by a battery V and the battery remains connected. If the area A is increased, the electric energy density will
 - a) be zero.
 - b) increase.
 - c) decrease.
 - d) remain the same. (ANSWER)
- 3. When two identical capacitors are connected parallel with a battery (see Figure 1), their total electric energy is U_1 . When these two identical capacitors are connected in series with the same battery (see Figure 2), their total electric energy, U_2 , will be

- 4. The value of the resistivity ρ of a conductor depends
 - a) on the nature of the moving charges in the conductor.
 - b) on the geometrical characteristics of the conductor.
 - c) on the drift speed of the electrons in the conductor.
 - d) on the material and the temperature of the conductor. (ANSWER)

5. At a junction, four wires are met. Which diagram is correct?

- 6. In the RC circuit, the switch S is closed at t = 0 s. After a very long time,
 - a) lamps 1, 2, and 3 will light.
 - b) lamps 1 and 2 will light but not lamp 3.
 - c) lamps 2 and 3 will light but not lamp 1. (ANSWER)
 - d) lamps 1 and 3 will light but not lamp 2.

- 7. In an RC circuit, while a capacitor is charging, the electric current of the circuit
 - a) increases exponentially.
 - b) decreases exponentially. (ANSWER)
 - c) remains the same.
 - d) increases and then decreases.
- 8. In an RC circuit of time constant $\tau = RC$, the capacitor has initial electric charge Q_0 and it starts to discharge at t = 0. What fraction of the initial electric charge Q_0 will be on the capacitor at $t = \tau$?
 - a) 0
 - b) 0.37 (ANSWER)
 - c) 0.63
 - d) 1.0