Kuwait University

General Physics II

Physics Department

PHY 102

Second Midterm Examination Fall Semester 2023 – 2024

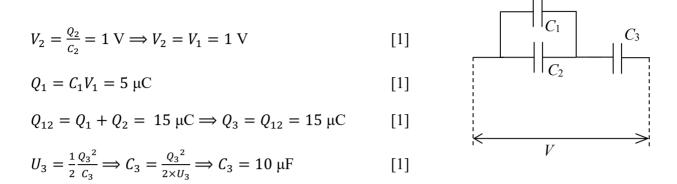
December 9, 2023 Time: 11:00 AM – 12:30 PM

Name:	Student No:
Section No:	Serial No:

Instructors: Drs. Alfailakawi, Hadipour, Lajko, Sharma, Vagenas

Fundamental constants							
$k = \frac{1}{4\pi\epsilon_{o}} = 9.0 \times 10^{9} \text{ N}.\text{ m}^{2}/\text{C}^{2}$	(Coulomb constant)						
$\varepsilon_o = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$	(Permittivity of free space)						
$\mu_0=4\pi\times 10^{\text{-7}} \text{ T.m/A}$	(Permeability of free space)						
$ e = 1.60 \times 10^{-19} \text{ C}$	(Elementary unit of charge)						
$N_A = 6.02 \times 10^{23}$	(Avogadro's number)						
$g = 9.8 \text{ m/s}^2$	(Acceleration due to gravity)						
$m_e = 9.11 \times 10^{-31} \text{ kg}$	(Electron mass)						
$m_p = 1.67 \times 10^{-27} \text{ kg}$	(Proton mass)						
Prefixes of units							
$m = 10^{-3}$ $\mu = 10^{-6}$	$n = 10^{-9}$ $p = 10^{-12}$						
$k = 10^3$ $M = 10^6$	$G = 10^9$ $T = 10^{12}$						

For use by Instructors only

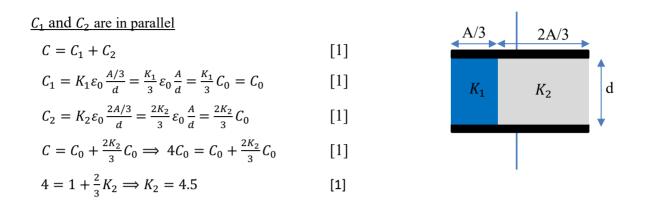

Problems	1	2	3	4	5	6	7	8	Questions	Total
Marks										

Instructions to the Students:

- 1. Mobile or other electronic devices are **<u>strictly prohibited</u>** during the exam.
- 2. Programmable calculators, which can store equations, are not allowed.
- 3. Cheating incidents will be processed according to the university rules.

PART I: Solve the following problems. Show your solutions in detail.

1. In the given network of capacitors with $C_1 = 5 \,\mu\text{F}$, and $C_2 = 10 \,\mu\text{F}$, the charge on capacitor C_2 is $Q_2 = 10 \,\mu\text{C}$. If the stored energy in capacitor C_3 is 11.25 μ J, find the capacitance C_3 . [4 points]


2. In an air-filled parallel-plate capacitor, the electric energy stored is 60 μ J. The space between the plates of the capacitor is of volume 4 × 10⁻³ m³. Find the magnitude of the electric field \vec{E} between the plates. [3 points]

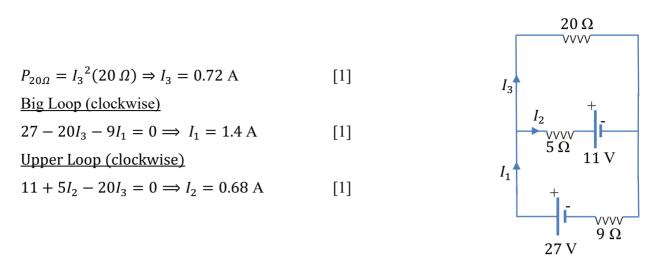
$$u = \frac{U_C}{(volume)}$$
[1]

$$u = \frac{60 \times 10^{-6}}{4 \times 10^{-3}} \text{ J/m}^3 \implies u = 1.5 \times 10^{-2} \text{ J/m}^3$$
[1]

$$u = \frac{1}{2}\varepsilon_0 E^2 \Longrightarrow E = \sqrt{\frac{2u}{\varepsilon_0}} \Longrightarrow E = 58,222 \text{ N/C}$$
 [1]

3. An air-filled parallel-plate capacitor with a surface area A and a plate separation d, has capacitance C_0 . When the capacitor is filled with two dielectric materials with dielectric constants $K_1 = 3$ and K_2 , as shown, the capacitance is $C = 4C_0$. Calculate the dielectric constant K_2 . [5 points]

4. A cylindrical wire of material of resistivity ρ = 1.72 × 10⁻⁸ Ω·m has length 25 m and radius 0.1 mm. The power dissipated in the wire is 11.6 W. Find the number of electrons that pass through the cross section of the wire in 2 ms. [5 points]

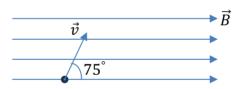

$$R = \rho \frac{L}{A} \Longrightarrow R = \rho \frac{L}{\pi r^2} \Longrightarrow R = 13.6 \,\Omega$$
^[1]

$$P = I^2 R \Longrightarrow I = \sqrt{\frac{P}{R}}$$
^[1]

$$I = 0.92 \text{ A}$$
 [1]

- $Q = I \Delta t \implies Q = 1.84 \times 10^{-3} \,\mathrm{C}$ [1]
- $Q = N|e| \Longrightarrow N = 1.15 \times 10^{16}$ electrons [1]

5. The power dissipated in the 20 Ω resistance is 10.4 W. Find the electric currents I_1 , I_2 , and I_3 . [3 points]

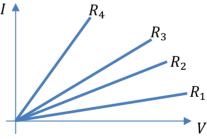

6. The capacitor C is initially uncharged and at time t = 0 the switch is closed. Find the electric current at time $t_1 = 2$ ms after the switch is closed. [4 Points]

7. A particle with charge q = -3.0 nC is moving in a magnetic field $\vec{B} = 4.5$ T \hat{k} . If the magnetic force exerted on the particle is $\vec{F} = 2.70 \times 10^{-9}$ N (- \hat{i}) + 4.05 × 10⁻⁹ N \hat{j} , then calculate the components of the velocity \vec{v} of the particle. [4 Points]

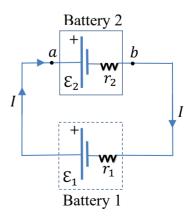
$$\vec{F} = q \ \vec{v} \times \vec{B} = (-3 \times 10^{-9}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & v_z \\ 0 & 0 & 4.5 \end{vmatrix}$$
[1]

 $\vec{F} = (-3 \times 10^{-9}) [4.5v_y \hat{\imath} - 4.5v_x \hat{\jmath}]$ [1] $2.70 \times 10^{-9} (-\hat{\imath}) + 4.05 \times 10^{-9} \hat{\jmath} = 1.35 \times 10^{-8} v_y (-\hat{\imath}) + 1.35 \times 10^{-8} v_x (-\hat{\jmath})$ [1] $v_x = 0.30 \text{ m/s}, \quad v_y = 0.20 \text{ m/s, and } v_z \text{ is indetermined}$ [1]

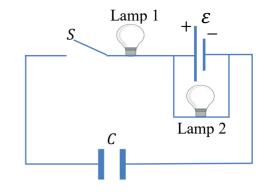
8. A proton with speed $v = 2 \times 10^5$ m/s enters a uniform magnetic field $\vec{B} = 8.0 \times 10^{-3}$ T $\hat{\imath}$, as shown. Find the pitch of its helical motion. [3 Points]

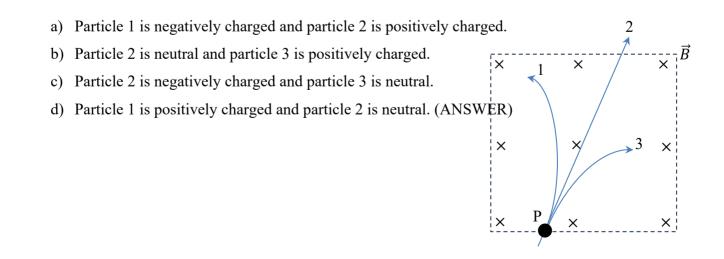

$$v_x = v \cos(75^\circ) \Rightarrow v_x = 51,764 \text{ m/s}$$
 [1]

$$T = \frac{2\pi m_p}{B|e|} \Longrightarrow T = 8.20 \times 10^{-6} \text{ s}$$
[1]


$$P = v_x T \Longrightarrow P = 0.424 \text{ m}$$
[1]

PART II: Conceptual Questions (each carries 1 point). Tick the best answer:


- 1. The capacitance of a capacitor depends only on
 - a) its potential difference.
 - b) the capacitor's stored energy.
 - c) its geometry and the matter between its plates. (ANSWER)
 - d) its electric charge.
- 2. An air-filled capacitor with plate separation d, area A and capacitance C_0 is charged by a battery V_0 . The battery is disconnected. If a slab of dielectric constant K fully fills the space between the plates of the capacitor, then the potential difference between the plates is
 - a) V_0 .
 - b) V_0/K . (ANSWER)
 - c) KV_0 .
 - d) zero.
- 3. In the figure below the characteristic curves of four resistances are drawn. Which statement is correct?
 - a) $R_1 > R_2 > R_4 > R_3$ b) $R_4 > R_3 > R_2 > R_1$ c) $R_4 > R_2 > R_3 > R_1$ d) $R_1 > R_2 > R_3 > R_4$ (ANSWER)


- 4. In the circuit shown, two batteries are connected as shown. The terminal voltage of battery 2 is
 - a) $V_{ab} = \mathcal{E}_1 + Ir_1$.
 - b) $V_{ab} = \mathcal{E}_2 + Ir_2$. (ANSWER)
 - c) $V_{ab} = \mathcal{E}_2 Ir_2$.
 - d) $V_{ab} = \mathcal{E}_1 + I(r_1 + r_2)$

- 5. In the RC circuit, the switch S is closed at t = 0 s. After a very long time,
 - a) lamp 1 and lamp 2 will light.
 - b) lamp 1 will not light but lamp 2 will light. (ANSWER)
 - c) lamp 1 and lamp 2 will not light.
 - d) lamp 1 will light up but lamp 2 will not light.

- 6. Which statement is correct?
 - a) The magnetic field lines can be open or closed.
 - b) The magnetic field lines are parallel with the magnetic field \vec{B} . (ANSWER)
 - c) The magnetic field lines are perpendicular to the magnetic field \vec{B} .
 - d) The magnetic field lines are always perpendicular to the electric field lines.
- 7. Which statement is **not** equivalent with the Gauss's law for magnetism?
 - a) We have never observed magnetic monopoles.
 - b) The magnetic field lines have no starting and end points.
 - c) The electric charge is conserved in any closed system. (ANSWER)
 - d) The magnetic charge does not exist.
- 8. Three particles enter a uniform magnetic field at point P. Which statement is correct?

