Kuwait University

Department of Physics

General Physics I for Biological Sciences (Phy 121)

Second Midterm Examination

Fall Semester 2023-2024

December 9, 2023 Time: 2:00 PM to 3:30 PM

Instructors: Dr. Abdullah, Dr. Afrousheh, Dr. Al-Otaibi, Dr. Hadipour, Dr. Kokkalis, Dr. Razee and Dr. Zaman

Solution

Instructions to the Students:

- Answer all the questions. Show all your working in this booklet.
- All communication devices must be switched off and placed in your bag or deposited with the invigilator in charge. Anyone found using a communication device will be disqualified.
- Programmable calculators, which can store equations, are not allowed. You may use a non-programmable calculator.
- Cheating incidents will be processed according to the University rules.
- Use SI units.
- Take $g = 9.8 \text{ m/s}^2$.

Fall 2023-2024

- 1. A frictionless track is in a vertical plane as shown. A small box of mass M = 0.7 kg leaves point A with speed $v_A = 5$ m/s and arrives at point B with speed $v_B = 3$ m/s.
 - (a) Find the net work done by all the forces acting on the box when it moved from A to B.
 - (b) Find the work done by the force of gravity when the box moved from A to B. **1 point**

Solution: The net work done is:

$$W_{net} = \mathrm{KE}_B - \mathrm{KE}_A$$
$$\implies W_{net} = \frac{1}{2}Mv_B^2 - \frac{1}{2}Mv_A^2 = -5.6 \mathrm{J}$$

Since the force of gravity is the only force (apart from the normal force, which does not do any work), we have

$$W_G = W_{net} = -5.6 \text{ J}$$

2. The average force of friction on a 1200-kg car moving on a horizontal road is $F_{fr} = 600$ N. It takes the car 15 s to uniformly accelerate from rest to a speed of 24 m/s on this road, during which it travels a distance of 180 m. Find the average engine power. **4 points**

Solution: The work-energy principle is

$$W_{engine} + W_{fr} = \frac{1}{2}Mv^2 \implies W_{engine} - F_{fr}d = \frac{1}{2}Mv^2$$
$$\implies W_{engine} = F_{fr}d + \frac{1}{2}Mv^2 = 453600 \text{ J}$$

The average power required by the engine is

$$\overline{P}_{engine} = \frac{W_{engine}}{t} = 3.02 \times 10^4 \text{ W}$$

3. The figure shows a jumper in action. The masses of different components of his body are given in the table. The centres of mass of the components are highlighted with crosses (\times) in the plot. Find the *x* and *y* coordinates of his centre of mass. **4 points**

- 4. The compact disk (radius R = 6 cm) accelerates uniformly from rest to 300 rpm in 10 s.
 - (a) Find the angular acceleration of the disk.
 (b) Find the radial acceleration of a point at the edge of the disk at t = 10 s.
 (c) Find the tangential acceleration of a point at the edge of the disk. **1 point**

Solution:

The initial and the final angular speeds are

$$\omega_0 = 0 \text{ rad/s} \qquad \omega = \frac{300 \times 2\pi}{60} = 31.4 \text{ rad/s}$$

The angular acceleration:
$$\alpha = \frac{\omega - \omega_0}{t} = 3.14 \text{ rad/s}^2$$

The radial acceleration:
$$a_R = \omega^2 R = 59.2 \text{ m/s}^2$$

The tangential acceleration:
$$a_{tan} = \alpha R = 0.19 \text{ m/s}^2$$

5. Two forces are acting on a 5-m long massless horizontal bar as shown. Find the net torque about the pivot point A.

Solution:

The torque of \vec{F}_1 is **positive**

 $\tau_1 = +F_1 \times 1 \times \sin 35^o = +17.2 \text{ m} \cdot \text{N}$

The torque of \vec{F}_2 is **negative**:

$$\tau_2 = -F_2 \times 4 \times \sin 50^o = -61.3 \text{ m} \cdot \text{N}$$

So, the net torque is

$$\tau = 17.2 - 61.3 = -44.1 \text{ m} \cdot \text{N}$$

6. A 10-kg horizontal beam is on two vertical support columns A and B. Two masses, $M_1 = 16$ kg and $M_2 = 12$ kg, are hanging from the beam as shown. Find the forces, F_A and F_B , on the beam due to the support columns. Assume the structure is in equilibrium. 4 points

Solution: We choose the pivot at the point where the beam touches the column A. Then the second condition of equilibrium gives us

$$+M_1g \times 1 - Mg \times 1 + F_B \times 2 - M_2g \times 4 = 0$$
$$\implies F_B = \frac{-M_1g + Mg + M_2g \times 4}{2} = 206 \text{ N}$$

Force: $F_A + F_B - M_1g - Mg - M_2g = 0 \implies F_A = 167 \text{ N}$

7. A frictionless incline is at a distance of d = 1.8 m from an unstretched spring. The spring is compressed by x = 20 cm using a 0.3-kg box and then it is released [see Fig. 1]. The coefficient of kinetic friction between the horizontal surface and the box is $\mu_k = 0.2$. When the box reaches a height of h = 80 cm on the incline, its speed is v = 3 m/s [see Fig. 2].

Solution: (a) The box moves a distance (d + x) on the rough surface. So the eork done by the force of friction is

$$W_{fr} = -(\mu_k Mg) (d+x) = -1.18 \text{ J}$$

(b) The work-energy principle is

$$KE_i + PE_i + W_{NC} = KE_f + PE_f$$
$$\implies 0 + 0 + \frac{1}{2}kx^2 + W_{fr} = \frac{1}{2}Mv^2 + Mgh + 0$$
$$\implies \frac{1}{2}kx^2 - 1.18 = 1.35 + 2.35 \implies \frac{1}{2}kx^2 = 4.88$$
$$\implies k = 244 \text{ N/m}$$