Kuwait University *Physics Department*

Physics 102 Midterm-1 Examination Fall Semester 2024 October 26, 2024

Time: 11:00 a.m. – 12:30 p.m.

Name: ……….………………………… Student ID No: ……….……………….

In**s**tructors**:** Drs. Abdullah, Al-Mumin, Lajko, Sharma, & Vagenas

Fundamental constants

For use by Instructors only

Important:

1. Mobiles or other electronic devices are **strictly prohibited** during the exam.

2. Programmable calculators, which can store equations, are not allowed.

3. Cheating incidents will be processed according to the university rules.

PART I. Solve the following problems. Show your solutions in detail.

1. Three charges $q_1 = 4.0 \mu C$, $q_2 = -2.0 \mu C$, and $q_3 = 5.0 \mu C$ are placed on the *xy*-plane. What is the net force \vec{F} on q_1 ? **[4 points]**

2. An infinite line charge with uniform linear charge density $\lambda = -4.0$ nC/m lies along the *x*-axis. A point charge $q = -8.0$ nC is located above it, as shown. What is the net electric field, \vec{E} , at point , if *a* = 0.40 m? **[3 points]**

$$
E_q = \frac{k|q|}{a^2} = \frac{9 \times 10^9 \times 8.0 \times 10^{-9} \text{ N}}{0.40^2} = 450 \text{ N/C}
$$

\n
$$
E_{\lambda} = \frac{|\lambda|}{2\pi\epsilon_0(\frac{a}{2})} = \frac{4.0 \times 10^{-9} \text{ N}}{2 \times \pi \times 8.85 \times 10^{-12} \times 0.20 \text{ C}} = 359.7
$$

\nN/C
\n
$$
\vec{E}_{\text{net}} = E_{\text{e}} \hat{i} - E_{\text{i}} \hat{i} = (90.3 \frac{\text{N}}{\text{m}}) \hat{i}
$$

3. A small ball with charge $q = -3.0$ nC and mass $m = 6.0 \times 10^{-8}$ kg hangs from the ceiling by an insulating massless string of length $L = 30$ cm. When the uniform electric field $\vec{E} = (-100 \text{ N/C}) \hat{i}$ is applied, the string makes an angle θ with the vertical line. What is the angle θ ? [4 points]

$$
F = |q|E
$$

\n
$$
F_x = |q|E - T \sin \theta = 0 \rightarrow T \sin \theta = |q|E
$$
 (1)
\n
$$
F_y = T \cos \theta - mg = 0 \rightarrow T \cos \theta = mg
$$
 (2)
\nDividing Eq. (1) by Eq. (2):
$$
\tan \theta = \frac{|q|E}{mg}
$$

\n
$$
\theta = \tan^{-1} \left(\frac{|q|E}{mg}\right) = \tan^{-1} \left(\frac{3.0 \times 10^{-9} \times 100}{6.0 \times 10^{-8} \times 9.8}\right) = 27.03^{\circ}
$$

4. A line charge of length $L = 0.40$ m, with charge $Q = -12.0$ µC distributed uniformly along its length, lies along the *x*-axis at a distance *a* = 0.20 m from the origin, as shown. Derive the formula for the electric field, \vec{E} , at the origin due to the line charge. What is the magnitude and direction of the electric field?

$$
\lambda = \frac{Q}{L} = \frac{-12 \,\mu\text{C}}{0.40 \,\text{m}} = -3.0 \times 10^{-5} \,\text{C/m}
$$
\n
$$
d\vec{E} = \frac{k|dQ|}{r^2} (\hat{i}) = \left(\frac{k|\lambda|dx}{x^2}\right) \hat{i}
$$
\n
$$
\vec{E} = \int_{a}^{a+L} \frac{k|\lambda|dx}{x^2} \,\hat{i}
$$
\n
$$
= k|\lambda| \left[-\frac{1}{x} \right]_{a}^{a+L} = k|\lambda| \left[\frac{1}{a} - \frac{1}{a+L} \right] = k \frac{|Q|}{a(a+L)} \hat{i}
$$
\n
$$
\vec{E} = (9.0 \times 10^5 \,\text{N/C}) \,\hat{i}
$$

5. A sphere of radius $a = 0.10$ m with a uniform volume charge density $\rho = +5.20 \mu C/m^3$ is inside a concentric *conducting* shell of inner radius $b = 0.20$ m and outer radius $c = 0.30$ m, as shown. The net charge on the shell is $q_{net} = -30.0$ nC. What is the net electric field \vec{E} at a distance $r = 0.40$ m from the centre of the sphere?

[4 points]

$$
q_{sph} = \frac{4}{3}\pi a^3 \rho = 2.18 \times 10^{-8} \text{ C} = 21.8 \text{ nC}
$$

\n
$$
q_{encl} = (21.8 - 30.0) \text{ nC} = -8.2 \text{ nC}
$$

\n
$$
E = k \frac{q_{e_{ncl}}}{r^2} = -461 \text{ N/C}
$$

\nDirection: inward

6. Three large *non-conducting* sheets carry uniform charge densities $\sigma_1 = -3.54$ nC/m², and $\sigma_2 = +7.08$ nC/m² and σ_3 . What is the sign and magnitude of σ_3 so that the net electric field at point *P* is $\vec{E} = (300 \text{ N/C}) \hat{i}$? [4 **points]**

 $\vec{E}_1 = \frac{|\sigma_1|}{2s}$ $\frac{|\sigma_1|}{2\varepsilon_0}$ $\hat{j} = \frac{3.54 \times 10^{-9} \text{ C/m2}}{2 \times 8.85 \times 10^{-12} \text{ C}^2 / (\text{N})}$ $\frac{3.54 \times 10^{6} \text{ C/m2}}{2 \times 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m2})} = (200 \text{ N/C})$ ̂ $\vec{E}_2 = \frac{|\sigma_2|}{2s}$ $\frac{|\sigma_2|}{2\varepsilon_0}$ $\hat{j} = \frac{7.08 \times 10^{-9} \text{ C/m2}}{2 \times 8.85 \times 10^{-12} \text{ C}^2 / (\text{N})}$ $\frac{7.06 \times 10^{-12} \text{ C/m2}}{2 \times 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m2})} = (400 \text{ N/C})$ ̂ $\vec{E}_1 + \vec{E}_2 + \vec{E}_3 = (300 \text{ N/C}) \hat{\textit{j}}$ $(200 \text{ N/C}) \hat{j} + (400 \text{ N/C}) \hat{j} + \vec{E}_3 = (300 \frac{\text{N}}{\text{C}}) \hat{j}$ $\vec{E}_3 = (-300 \text{ N/C}) \hat{j} = \frac{\sigma_3}{2 \pi}$ $\frac{\sigma_3}{2\varepsilon_0}\hat{j}$ $\sigma_3 = -5.31 \text{ nC/m}^2$; (sign = negative)

7. A charge $q_1 = 3.5 \mu C$ is held at rest. Another charge $q_2 = -2.4 \mu C$ of mass $m = 2.0 \times 10^{-12}$ kg moves away from q_1 with a speed of $v = 3.6 \times 10^5$ m/s when it is at a distance 0.30 m, as shown. At what distance from q_1 will q_2 stop momentarily? **[4 points]**

8. Two charges $Q_1 = -5.0 \mu C$ and $Q_2 = 8.0 \mu C$ are located, as shown. How much work is done by the electric force to move a charge $q = 2.0 \mu C$ from point *A* to point *B*? Given, $a = 0.20$ m. **[5 points]**

$$
V_A = k \frac{Q_1}{a} + k \frac{Q_2}{a}
$$

= -2.25 × 10⁵ V + 3.60 × 10⁵ V = 1.35 × 10⁵ V

$$
V_B = k \frac{Q_1}{0.5a} + k \frac{Q_2}{0.5a}
$$

= -4.5 × 10⁵ V + 7.2 × 10⁵ V = 2.7 ×
10⁵ V

$$
W = -\Delta U = -q\Delta V = -q(V_B - V_A)
$$

= -(2.0 µC)(2.7 – 1.35) × 10⁵ = -0.27 J
Since the potential energy increases, the work must be

PART II : Conceptual Questions (each carries 1 point). Tick the best answer.

- 1. An *electron* is moving in a uniform electric field \vec{E} , as shown, and no other forces are present in the problem. Assume the electron has an initial velocity $v_0 \hat{\imath}$. What is the direction of acceleration, \vec{a} , of the electron due to the electric field?
	- a) $\vec{a} = a \hat{\imath}$.
	- b) $\vec{a} = -a \hat{\imath}$. c) $\vec{a} = a \hat{j}$. (ans)
	- d) $\vec{a} = -a \hat{\jmath}$.

2. At what point is the electric field the smallest in magnitude?

- a) *A.*
- b) *B.*
- c) *C.*
- d) *D*. (ans)

- a) λ
- b) \wedge (ans)
- c) \leftarrow
- d) \rightarrow

- a) zero.
- b) $-1.0 \mu C$.
- c) $+1.0 \mu C$.
- d) $+2.0 \mu C$. (ans)

 $+Q$ $+Q$

 $\cdot \mathsf{A}$

5. If $q_1 = +2q$, $q_2 = -2q$, and $q_3 = -3q$, the net flux through the cube of side *L* is:

- a) zero.
- b) $+q/\varepsilon_0$.
- c) $+2q/\varepsilon_0$. (ans)
- d) $-3q/\varepsilon_0$.

6. A *spherical shell* has a uniform charge density *ρ*. Which of the following diagrams represents the electric field of the shell as a function of distance *r* from the centre?

- 7. An electron moves in the direction opposite to an electric field \vec{E} . The potential energy *U* of the electron and the electric potential *V* are such that:
	- a) *U* increases and *V* decreases.
	- b) *U* decreases and *V* decreases.
	- c) *U* increases and *V* increases.
	- d) *U* decreases and *V* increases. (ans)
- 8. Two charges $q_1 = Q$, and q_2 are located on the *x*-axis as shown. If the electric potential at P is zero, relative to $V = 0$ at infinity, what is the value of q_2 ?

