Kuwait University

Physics Department

Physics 121

Midterm I Exam Fall Semester (2023-2024)

October 28, 2023 Time: 15:00 – 16:30

Student's Name:	Serial No:
Student's Number:	Section No:
Instructors: Drs. Abdullah, Afrousheh, Alotaibi, Fladipour,	Kokkalis, Razee, Zaman

Important Instructions to the Students:

- 1. Answer all questions and problems.
- 2. Full mark = 26 points as arranged in the table below.
- 3. No solution = no points.
- 4. Use ST units.
- 5. Take $g = 9.8 \text{ m/s}^2$.
- 6. Mobiles are **strictly prohibited** during the exam.
- 7. Programmable calculators, which can store equations, are not allowed.
- 8. Cheating incidents will be processed according to the university rules.

For use by Instructors only

#	P1	P2	Р3	P4	P5	P6	P7	Total
	4	4	4	4	3	4	3	26
Pts								

GOOD LUCK

- **P1.** A car travels from the origin (O) to point A, with **constant velocity** of magnitude $v_1 = 3$ m/s. Then, it travels back to point B with **constant velocity** $\overrightarrow{v_2}$. The **average speed** of the car for the whole trip (from O to A and back to B) is 2 m/s.
 - a) Find the time it took the car to move from A to B?

(3 points)

b) Find the velocity $\overrightarrow{v_2}$ of the car travelling from A to B?

(1 point)

Average speed =
$$\frac{total\ distance}{total\ time} \rightarrow 2 = \frac{10+9}{t} \rightarrow t = 9.5\ s$$

$$v_1 = \frac{x_A - x_O}{t_1} \to t_1 = \frac{x_A}{v_1} = \frac{5}{3} = 1.7 \text{ s}$$

$$t = t_1 + t_2 \rightarrow t_2 = t - t_1 = 9.5 - 1.7 = 7.8 s$$

$$v_2 = \frac{x_B - x_A}{t_2} = \frac{-9 - 5}{7.8} = -1.8 \text{ m/s}$$

- **P2.** A student throws a ball upward with initial velocity 25 m/s while standing on the edge of a cliff, so that the ball can fall to the base of the cliff 100 m below. **Ignore air resistance during the motion.**
 - a) Find the velocity of the ball when it is 15 m above the ground (point A)?

(2 points)

b) How long does it take for the ball to reach the ground?

(2 points)

$$v^2 = v_0^2 + 2a(y - y_0) \rightarrow v^2 = (25)^2 + 2(-9.8)(-85 - 0) = 2291$$

$$v^2 = 2291 \rightarrow v = \pm 47.9 \text{ m/}_S \rightarrow v = -47.9 \text{ m/}_S$$

$$y = y_0 + v_0 t + \frac{1}{2}at^2 \rightarrow -100 = 0 + (25)t + \frac{1}{2}(-9.8)t^2$$

$$4.9t^2 - 25t - 100 = 0 \to t = \frac{25 \pm \sqrt{(-25)^2 - 4(4.9)(-100)}}{2(4.9)} \to t = 7.74 \, s$$

- **P3.** Three vectors with magnitudes, A = 5 m, B = 2 m, and C = 3 m are shown below. Vector \overrightarrow{R} is given by $\overrightarrow{R} = 2\overrightarrow{A} \overrightarrow{B} + 3\overrightarrow{C}$.
 - a) Find the magnitude of vector \overrightarrow{R} .

(3 points)

b) Find the direction of \overrightarrow{R} , with respect to the positive *x-axis*.

$$R_x = 2A_x - B_x + 3C_x = 2(A.\cos 30^\circ) - (-B.\cos 60^\circ) + 3(0) = 9.7 m$$

$$R_v = 2A_v - B_v + 3C_v = 2(A.\sin 30^\circ) - (B.\sin 60^\circ) + 3(-C) = -5.7 m$$

$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(9.7)^2 + (-5.7)^2} = 11.3 m$$

$$\tan \theta = \frac{R_y}{R_x} = \frac{-5.7}{9.7} = -0.59 \rightarrow \theta = -30.5^{\circ}$$

 \overrightarrow{B}

- **P4.** Box A $(m_A = 8 \text{ kg})$ lies on a rough table $(\mu_k = 0.2)$, and is connected to a box B (m_B) by a lightweight cord as shown. When box B is released box A moves to the east with **uniform acceleration** $a = 2 \text{ m/s}^2$.
 - a) Find the tension in the cord.

(2 points)

(2 points)

b) Find the mass of box B (m_B)

Box A:

$$F_{fr} = \mu_k m_A g \Rightarrow (0.2)(8)(9.8) = 15.7 N$$

$$\sum \overrightarrow{F_x} = m_A \overrightarrow{a} \to F_T - F_{fr} = m_A a$$

$$\rightarrow F_T = m_A a + F_{fr} = (8)(2) + 15.68 = 31.7 N$$

Box B:

$$\sum \overrightarrow{F_y} = m_B \overrightarrow{a} \to F_T - m_B g = m_B(-a)$$

$$F_T = m_B(g - a) \rightarrow m_B = \frac{F_T}{g - a} = \frac{31.7}{9.8 - 2} = 4.1 \text{ kg}$$

P5. A 68 – kg student is standing on a scale inside an air balloon. When the balloon **accelerates upward**, the scale shows 75 kg.

a) Find the apparent weight (in N) of the student.

(1 point)

b) Find the magnitude of balloon's acceleration?

(2 points)

$$F_N = m_{scale} g = 75 \times 9.8 = 735 N$$

Taking positive y-direction to be upward

$$\sum \vec{F}_y = m\vec{a}_y \rightarrow F_N - mg = ma$$

$$a = \frac{F_N - mg}{m} = \frac{735 - 666.4}{68} = 1.0 \ m/_{S^2}$$

P6. Two boxes A and B with equal mass $(m_A = m_B = m)$ are connected by a lightweight cord as shown. Find their acceleration when the system is released from rest. Ignore any force of friction. (4 points)

Box A: Taking positive y-direction to be upward

$$\sum \vec{F}_y = m\vec{a}_y \to F_T - mg = m(-a) \to F_T = m(g - a) \quad (1)$$

A 30°

Box B: Taking the positive x-direction as shown

$$\sum \vec{F}_x = m\vec{a}_x \to F_T - mg\sin 30^\circ = m \cdot a \to F_T = m(g\sin 30^\circ + a) \quad (2)$$

(1) & (2)
$$\rightarrow m(g-a) = m(gsin30^{\circ} + a) \rightarrow a = \frac{g(1-sin30^{\circ})}{2}$$

$$a = 2.45 \, \frac{m}{s^2}$$

- **P7.** A centripetal force of magnitude 4 N acts on a 0.2 kg ball and keeps it in a horizontal uniform circular motion of radius R = 15 cm.
 - a) Find the magnitude of the linear velocity of the ball.

(2 points)

b) Find the period of the circular motion.

(1 point)

$$a_R = \frac{F_c}{m} = \frac{4}{0.2} = 20 \ m/s^2$$

$$a_R = \frac{v^2}{R} \to v = \sqrt{a_R R} = 1.7 \text{ m/s}$$

$$v = \frac{2\pi R}{T} \rightarrow T = \frac{2\pi R}{v} = 0.6 s$$