

Physics 121

Final Exam Fall Semester (2022-2023)

December 29, 2022 Time: 08:00 – 10:00

Student's Name: ……………………

Student's Number: ….…………………………………… Section No: …………………

Instructors: Drs. Ali, Alotaibi, Alsmadi, Hadipour**,** Kokkalis, Razee

Important Instructions to the Students:

- 1. Answer all questions and problems.
- 2. Full mark = $40 \cdot \text{in}$ arranged in the table below.
- 3. No solution $\frac{1}{2}$ no points.
- 4. **Use SI u**
- 5. Take g 9.8 m

6. Mobiles and electronic devices are **strictly prohibited** during the exam. December 29, 2022

Time: 08:00 - 10:00

It's Name:

It's Soution

It's Soution No:

It's Soution

It's Soution No:

nable calculators, which can store equations, are not allowed.

8. **Cheating incidents will be processed according to the university rules.**

For use by Instructors only

P1. A ball is thrown vertically upwards from the top of a building (point *A*), with initial speed v_o . The ball reaches its maximum height (point *B*) in 0.5 s, and then comes to ground (point *C*), as shown. The average velocity for the entire motion is −5.0 m/s. Ignore air resistance.

- a. With what initial velocity the ball was thrown? **(1 point)**
- b. Find the height (h) of the building. **(2 points)**
- c. How much time did it take to reach point C? **(1 point)**

(a)
$$
(A) \rightarrow (B): v = v_0 + at \rightarrow v_0 = v
$$

\n(b) $\overline{v} = \frac{v_0 + v_c}{2} \rightarrow v_c = 2\overline{v} - v_0$
\n $(A) \rightarrow (C): v_c^2 = v_0^2 + 2a(y)$
\n $\rightarrow y = -10.1 \text{ m} \rightarrow h = 10$
\n $\overline{v} = \frac{v_0 v_0}{v_0} + \frac{2a(y_0)}{v_0} = 2 \overline{v} - \frac{b^2}{2a} + \frac{c^2}{2a} = \frac{v_0^2 - v_0^2}{2a} + \frac{c}{2a} = \frac{(-14.9)^2 - 4.9^2}{2(-9.8)} + 0$
\n(c) $\overline{v} = \frac{\text{Displg}}{\text{min}} = \frac{2a}{\overline{v}} \rightarrow \Delta t = \frac{y - y_0}{\overline{v}} = \frac{-10.1 - 0}{-5} = 2.0 \text{ s}$

P2. Two vectors with magnitudes $B = 20.0$ m, and $C = 20.0$ m are shown. Vector \overrightarrow{D} is given

- by the equation $\overrightarrow{D} = \overrightarrow{B} + \overrightarrow{C}$.
- a. Find the magnitude of vector \overrightarrow{D} . (3 **points**)
- b. Find the direction of \overrightarrow{D} , with respect to the positive *x-axis*. (1 point)
- -

$$
B_x = -B \cos 30^\circ = -20 \cos 30^\circ = -17.3 \ m
$$

\n
$$
B_y = -B \sin 30^\circ = -20 \sin 30^\circ = -10.0 \ m
$$

\n
$$
C_x = -C \sin 30^\circ = -20 \sin 30^\circ = -10.0 \ m
$$

\n
$$
C_y = C \cos 30^\circ = 20 \cos 30^\circ = 17.3 \ m
$$

\n
$$
D_x = B_x + C_x = -17.3 - 10 = -27.3 \ m
$$

\n
$$
D_y = B_y + C_y = -10 + 17.3 = 7.30 \ m
$$

\n
$$
D = \sqrt{D_x^2 + D_y^2} = 28.3 \ m
$$

\n
$$
\theta' = \tan^{-1} \left| \frac{D_y}{D_x} \right| = 15^\circ \rightarrow \theta = 180^\circ - 15^\circ
$$

\nwith the positive *x*-axis.

- **P3.** Two blocks $m = 25$ kg and $M = 35$ kg, are connected by a massless cord over a frictionless and massless pulley, as shown below. The coefficient of kinetic friction between the inclined surface and block m is $\mu_k = 0.20$.
	- a. Find the acceleration of block m as it slides up the inclined plane. **(3 points)**
	- b. Block M starts from rest from 1 m above ground, as shown. Find the time taken by block M to hit the floor. $(1 point)$

Taking the *xy-coordinate* system shown below:

P4. A block of mass $M = 6.0$ kg is being pushed by a force F_p on a rough horizontal surface (see figure). The box starts from rest and achieves a speed of 3.0 m/s after moving a distance of $d = 5.0$ m to the east. If the average force of friction is 8.0 N, find the work done by the force F_p . (3 points)

$$
W_{F_G} = -\Delta PE = PE_i - PE_f
$$

\n
$$
\rightarrow W_{F_G} = mg(2 - 0.75) - 0 = 1.8
$$

P6. The figure shows the arm of an athlete bent at 40^o . Each part of the arm has mass m_u , m_f ,

 m_h . The corresponding centers-of-mass are indicated by " \times ". Find the *x*-coordinate and *y*coordinate of the center-of-mass of the entire arm, measured from the shoulder joint.

(4 points)

- **P8.** A girl weighting 441 N stands on the very end of a uniform board of length $L = 4.0$ m and mass M . The board is supported at point A, as shown. The entire system is in static equilibrium.
- a. Find the mass of the board (M) , 0.80_m in kg. **(2 points)** b. Find the magnitude of the $\overrightarrow{F_A}$ (A) supporting force F_A . (2 points) From point (A): $\sum \vec{\tau} = -0.80 \times 441 + (\frac{L}{2} - 0.80) \times M$

441 - $Mg = 0 \rightarrow F_A = 735 N$

wus from the human heart into the aorta and the cross-sectional area of the aorta $\sum_{i=1}^{\infty} X + 10^{-4}$ m² and the sing through it is v Net torque around point (A): $\sum \vec{\tau} = -0.80 \times 441 + \left(\frac{L}{2}\right)$ $\frac{2}{2}$ – 0.80) × M₂ = 0 → M = 30 kg $\sum \vec{F} = F_A - 441 - Mg = 0 \rightarrow F_A = 735 N$
- **P9.** Blood flows from the human heart into the aorta and then passes into the major artery, as shown. The cross-sectional area of the aorta if $A_1 = 1.5 \times 10^{-4}$ m² and the speed of the blood passing through it is $v_1 = 0.4$ m/s. The coss-sectional area of the artery is $A_2 =$ 2.0×10^{-4} m². The blood density is $\rho = 0.05 \times 10^3$ kg/m³.

 (2 points)

- a. Calculate the speed of the blood **Now** in the artery (v_2) .
- b. Calculate the pressure difference between the aorta and artery measured at the same level. **(2 points)**

$$
A_1 v_1 = A_2 v_2
$$

\n
$$
v_2 = 0.9 \frac{m}{s}
$$

\n
$$
B_1 v_1 = 2.0 \times 10^{-4} \times v_2
$$

$$
P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2 \to P_1 - P_2 = \frac{1}{2}\rho (v_2^2 - v_1^2)
$$

\n
$$
\to P_1 - P_2 = \frac{1}{2}(1.05 \times 10^3)(0.9^2 - 0.4^2)
$$

\n
$$
\to P_1 - P_2 = 341.25 \, N/m^2
$$

- P10. A 1.4 kg ball is attached to a spring and undergoes simple harmonic oscillation. The graph below shows the ball's position x (in cm) as a function of time t (in s). Find:
	- a. the period of the oscillation. **(1 point)**
	- b. the spring stiffness constant k . $(1 point)$
	- c. the total energy of the oscillation. **(1 point)**
	- d. the ball's speed at $t = 0.4$ s. **(2 points**)

$$
\begin{array}{c}\n\text{1.0}\n\end{array}
$$
\n
$$
\begin{array}{c}\n\begin{array}{c}\n\text{2.0}\n\end{array} \\
\begin{array}{c}\n\begin{array}{c}\n\end{array} \\
\begin{array}{c}\n\end{array} \\
\begin{array}{c}\
$$

 $T = 0.8 s$

$$
T = 2\pi \sqrt{\frac{m}{k}} \rightarrow k = m \left(\frac{2\pi}{T}\right)^2 = 86.3 \text{ N/m}
$$

$$
E = \frac{1}{2}kA^2 = \frac{1}{2} \times 86.3 \times (0.03)^2 = 0.04J
$$

At $t = 0.4$ s the mass is at the equilibrium point $(x = 0.6$ (see the graph). At that position KE is max. and $PE = 0$ J. Applying conservation of mechanical energy between the two positions of the oscillation:

$$
T = 2\pi \sqrt{\frac{m}{k}} \rightarrow k = m \left(\frac{2\pi}{T}\right)^2 = 86.3 \text{ N/m}
$$

\n
$$
E = \frac{1}{2}kA^2 = \frac{1}{2} \times 86.3 \times (0.03)^2 = 0.04J
$$

\nAt $t = 0.4$ s the mass is at the equilibrium point ($x = cm$) (see the graph). At
\nKE is max. and $PE = 0J$. Applying conservan one mechanical energy bet
\npositions of the oscillation:
\n
$$
E = \frac{1}{2}kA^2 = 0.04J = \frac{1}{2}mv_0^2 \rightarrow v
$$

\n
$$
v = 0.24 m/s
$$